Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil. 2018;39(3–4):135–47.
Article
PubMed
Google Scholar
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R502–16.
Article
CAS
PubMed
Google Scholar
Robergs RA. Exercise-induced metabolic acidosis: Where do the protons come from? Sportscience. 2001;5(2).
van Meerhaeghe A, Velkeniers B. Lactate production and exercise-induced metabolic acidosis: guilty or not guilty? Eur Respir J. 2005;26(4):744.
Article
PubMed
Google Scholar
Chen S, Minegishi Y, Hasumura T, Shimotoyodome A, Ota N. Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice. Sci Rep. 2020;10(1):6065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013;3(1):201–20.
Article
PubMed
PubMed Central
Google Scholar
Burke LM. Practical issues in evidence-based use of performance supplements: supplement interactions, repeated use and individual responses. Sports Med. 2017;47(Suppl 1):79–100.
Article
PubMed
PubMed Central
Google Scholar
Durkalec-Michalski K, Kusy K, Ciekot-Sołtysiak M, Zieliński J. The effect of beta-alanine versus alkaline agent supplementation combined with branched-chain amino acids and creatine malate in highly-trained sprinters and endurance athletes: a randomized double-blind crossover study. Nutrients. 2019;11(9):1961.
Article
CAS
PubMed Central
Google Scholar
Chen I-F, Wu H-J, Chen C-Y, Chou K-M, Chang C-K. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. J Int Soc Sports Nutr. 2016;13:28.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Andrade Kratz C, de Salles Painelli V, de Andrade Nemezio KM, da Silva RP, Franchini E, Zagatto AM, et al. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. J Sci Med Sport. 2017;20(4):403–8.
Article
PubMed
Google Scholar
Manjarrez-Montes de Oca R, Farfán-González F, Camarillo-Romero S, Tlatempa-Sotelo P, Francisco-Argüelles C, Kormanowski A, et al. Effects of creatine supplementation in taekwondo practitioners. Nutr Hosp. 2013;28(2):391–9.
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fedewa MV, Spencer SO, Williams TD, Becker ZE, Fuqua CA. Effect of branched-chain amino acid supplementation on muscle soreness following exercise: a meta-analysis. Int J Vitam Nutr Res. 2019;89(5–6):348–56.
Article
CAS
PubMed
Google Scholar
Butts J, Jacobs B, Silvis M. Creatine Use in Sports. Sports Health. 2018;10(1):31–4.
Article
PubMed
Google Scholar
Lancha Junior AH, Painelli V, de S, Saunders, Artioli B. GG. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Med. 2015;45(Suppl 1):71–81.
Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. 2010;2(1):75–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derave W, Özdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, et al. β-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol (1985). 2007;103(5):1736–43.
Article
CAS
Google Scholar
Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225–33.
Article
CAS
PubMed
Google Scholar
Berti Zanella P, Donner Alves F, Guerini de Souza C. Effects of beta-alanine supplementation on performance and muscle fatigue in athletes and non-athletes of different sports: a systematic review. Sports Med Phys Fitness. 2017;57(9):1132–41.
Google Scholar
Heibel AB, Perim PHL, Oliveira LF, McNaughton LR, Saunders B. Time to optimize supplementation: modifying factors influencing the individual responses to extracellular buffering agents. Front Nutr. 2018;5:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol (1985). 1986;60(2):472–8.
Article
CAS
Google Scholar
de Oliveira LF, Saunders B, Yamaguchi G, Swinton P, Artioli GG. Is individualization of sodium bicarbonate ingestion based on time to peak necessary? Med Sci Sports Exerc. 2020;52(8):1801–8.
Article
CAS
Google Scholar
Grgic J, Garofolini A, Pickering C, Duncan MJ, Tinsley GM, Del Coso J. Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the Yo-Yo test: a systematic review and meta-analysis. J Sci Med Sport. 2020;23(1):41–7.
Article
PubMed
Google Scholar
Carr BM, Webster MJ, Boyd JC, Hudson GM, Scheett TP. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol. 2013;113(3):743–52.
Article
CAS
PubMed
Google Scholar
Durkalec-Michalski K, Zawieja EE, Zawieja BE, Michałowska P, Podgórski T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci Rep. 2020;10(1):1878.
Chou C-C, Sung Y-C, Davison G, Chen C-Y, Liao Y-H. Short-term high-dose vitamin c and e supplementation attenuates muscle damage and inflammatory responses to repeated taekwondo competitions: a randomized placebo-controlled trial. Int J Med Sci. 2018;15(11):1217–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durkalec-Michalski K, Zawieja EE, Podgórski T, Zawieja BE, Michałowska P, Łoniewski I, et al. The effect of a new sodium bicarbonate loading regimen on anaerobic capacity and wrestling performance. Nutrients. 2018;10(6):697.
Article
PubMed Central
CAS
Google Scholar
Durkalec-Michalski K, Nowaczyk PM, Siedzik K. Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. J Int Soc Sports Nutr. 2019;16(1):16.
Article
PubMed
PubMed Central
Google Scholar
Durkalec-Michalski K, Zawieja EE, Zawieja BE, Jurkowska D, Buchowski MS, Jeszka J. Effects of low versus moderate glycemic index diets on aerobic capacity in endurance runners: three-week randomized controlled crossover trial. Nutrients. 2018;10(3):370.
Article
PubMed Central
CAS
Google Scholar
Durkalec-Michalski K, Zawieja EE, Podgórski T, Łoniewski I, Zawieja BE, Warzybok M, et al. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PLoS ONE. 2018;13(5):e0197480.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dolan E, Swinton PA, Painelli V, de S, Stephens Hemingway, Mazzolani B, Infante Smaira B. F, et al. A systematic risk assessment and meta-analysis on the use of oral β-alanine supplementation. Adv Nutr. 2019;10(3):452–63.
Nana A, Slater GJ, Hopkins WG, Halson SL, Martin DT, West NP, et al. Importance of standardized DXA protocol for assessing physique changes in athletes. Int J Sport Nutr Exerc Metab. 2016;26(3):259–67.
Article
PubMed
Google Scholar
Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS One. 2014;9(1):e85276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sports Nutr. 2015;12:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Durkalec-Michalski K, Jeszka J, Podgórski T. The Effect of a 12-week beta-hydroxy-beta-methylbutyrate (HMB) supplementation on highly-trained combat sports athletes: a randomised, double-blind, placebo-controlled crossover study. Nutrients. 2017;9(7):753.
Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, et al. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. 2008;34(4):547–54.
Article
CAS
PubMed
Google Scholar
Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, et al. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009;6:5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kern BD, Robinson TL. Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. J Strength Cond Res. 2011;25(7):1804–15.
Article
PubMed
Google Scholar
Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16(4):430–46.
Article
CAS
PubMed
Google Scholar
Janowski M, Zieliński J, Kusy K. Exercise response to real combat in elite taekwondo athletes before and after competition rule changes. J Strength Cond Res. 2019;10.1519/JSC.0000000000003110.
Campos FA, Bertuzzi R, Dourado AC, Santos VG, Franchini E. Energy demands in taekwondo athletes during combat simulation. Eur J Appl Physiol. 2012;112(4):1221–8.
Article
PubMed
Google Scholar
Baguet A, Koppo K, Pottier A, Derave W. Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol. 2010;108(3):495–503.
Article
CAS
PubMed
Google Scholar
Lopes-Silva JP, Da Silva Santos JF, Artioli GG, Loturco I, Abbiss C, Franchini E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci. 2018;18(3):431–40.
Article
PubMed
Google Scholar
Zoeller RF, Stout JR, O’kroy JA, Torok DJ, Mielke M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids. 2007;33(3):505–10.
Article
CAS
PubMed
Google Scholar
Higgins MF, Wilson S, Hill C, Price MJ, Duncan M, Tallis J. Evaluating the effects of caffeine and sodium bicarbonate, ingested individually or in combination, and a taste-matched placebo on high-intensity cycling capacity in healthy males. Appl Physiol Nutr Metab. 2016;41(4):354–61.
Article
CAS
PubMed
Google Scholar
Brisola GMP, Miyagi WE, da Silva HS, Zagatto AM. Sodium bicarbonate supplementation improved MAOD but is not correlated with 200- and 400-m running performances: a double-blind, crossover, and placebo-controlled study. Appl Physiol Nutr Metab. 2015;40(9):931–7.
Article
CAS
PubMed
Google Scholar
Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH. Does sodium-bicarbonate ingestion improve simulated judo performance? Int J Sport Nutr Exerc Metab. 2007;17(2):206–17.
Article
CAS
PubMed
Google Scholar
Saunders B, Sale C, Harris RC, Sunderland C. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9(4):627–32.
Article
PubMed
Google Scholar
Felippe LC, Lopes-Silva JP, Bertuzzi R, McGinley C, Lima-Silva AE. Separate and combined effects of caffeine and sodium-bicarbonate intake on judo performance. Int J Sports Physiol Perform. 2016;11(2):221–6.
Article
PubMed
Google Scholar
Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36(5):807–13.
Article
CAS
PubMed
Google Scholar
Gonçalves LC, Bessa A, Freitas-Dias R, Luzes R, Werneck-de-Castro JPS, Bassini A, et al. A sportomics strategy to analyse the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. J Int Soc Sports Nutr. 2012;9(1):30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kantanista A, Kusy K, Zarębska E, Włodarczyk M, Ciekot-Sołtysiak M, Zieliński J. Blood ammonia and lactate responses to incremental exercise in highly-trained male sprinters and triathletes. Biomedical Human Kinetics. 2016;8(1):32–8.
Article
Google Scholar
Włodarczyk M, Kusy K, Słomińska E, Krasiński Z, Zieliński J. Changes in blood concentration of adenosine triphosphate metabolism biomarkers during incremental exercise in highly trained athletes of different sport specializations. J Strength Cond Res. 2019;33(5):1192–200.
Article
PubMed
Google Scholar
Hsueh C-F, Wu H-J, Tsai T-S, Wu C-L, Chang C-K. The effect of branched-chain amino acids, citrulline, and arginine on high-intensity interval performance in young swimmers. Nutrients. 2018;10(12):1979.
Article
PubMed Central
CAS
Google Scholar
Prado ES, Neto JM, de R, Almeida, de Melo RD, de Cameron MGD. L-C. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br J Nutr. 2011;105(12):1729–33.
Bassini-Cameron A, Monteiro A, Gomes A, Werneck-de-Castro JPS, Cameron L. Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Br J Sports Med. 2008;42(4):260–6.
Article
CAS
PubMed
Google Scholar
Carvalho-Peixoto J, Alves RC, Cameron L-C. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Metab. 2007;32(6):1186–90.
Article
PubMed
CAS
Google Scholar
Holeček M, Vodeničarovová M. Effects of branched-chain amino acids on muscles under hyperammonemic conditions. J Physiol Biochem. 2018;74(4):523–30.
Article
PubMed
CAS
Google Scholar
Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol. 2010;91(3):200–19.
Article
CAS
PubMed
Google Scholar
Yuan Y, Chan KM. A review of the literature on the application of blood ammonia measurement in sports science. Res Q Exerc Sport. 2000;71(2):145–51.
Article
CAS
PubMed
Google Scholar