Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–68. https://doi.org/10.1249/MSS.0000000000000852.
Article
CAS
PubMed
Google Scholar
Stellingwerff T, Maughan RJ, Burke LM. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J Sports Sci. 2011;29(Suppl 1):S79–89. https://doi.org/10.1080/02640414.2011.589469.
Article
PubMed
Google Scholar
Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29(Suppl 1):S101–14. https://doi.org/10.1080/02640414.2011.565783.
Article
PubMed
Google Scholar
Khodaee M, Olewinski L, Shadgan B, Kiningham RR. Rapid weight loss in sports with weight classes. Curr Sports Med Rep. 2015;14(6):435–41. https://doi.org/10.1249/JSR.0000000000000206.
Article
PubMed
Google Scholar
Manore MM. Weight Management for Athletes and Active Individuals: A Brief Review. Sports Med. 2015;45(Suppl 1):S83–92.
Article
PubMed
Google Scholar
Berryman CE, Sepowitz JJ, McClung HL, Lieberman HR, Farina EK, McClung JP, et al. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance. J Appl Physiol (1985). 2017;122(6):1485–93.
Article
CAS
Google Scholar
Berryman CE, Young AJ, Karl JP, Kenefick RW, Margolis LM, Cole RE, et al. Severe negative energy balance during 21 d at high altitude decreases fat-free mass regardless of dietary protein intake: a randomized controlled trial. FASEB J. 2018;32(2):894–905. https://doi.org/10.1096/fj.201700915R.
Article
CAS
PubMed
Google Scholar
Margolis LM, Rood J, Champagne C, Young AJ, Castellani JW. Energy balance and body composition during US Army special forces training. Appl Physiol Nutr Metab. 2013;38(4):396–400. https://doi.org/10.1139/apnm-2012-0323.
Article
CAS
PubMed
Google Scholar
Murphy NE, Carrigan CT, Philip Karl J, Pasiakos SM, Margolis LM. Threshold of energy deficit and lower-body performance declines in military personnel: a meta-regression. Sports Med. 2018;48(9):2169–78. https://doi.org/10.1007/s40279-018-0945-x.
Article
PubMed
Google Scholar
Pasiakos SM, Cao JJ, Margolis LM, Sauter ER, Whigham LD, McClung JP, et al. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 2013;27(9):3837–47. https://doi.org/10.1096/fj.13-230227.
Article
CAS
PubMed
Google Scholar
Wilson JM, Lowery RP, Roberts MD, Sharp MH, Joy JM, Shields KA, et al. The effects of Ketogenic dieting on body composition, Strength, Power, and Hormonal Profiles in Resistance Training Males. J Strength Cond Res. 2020;34(12):3463–74.
Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, VanDusseldorp T, Taylor L, et al. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017;14:16.
Article
PubMed
PubMed Central
Google Scholar
Volek JS, Freidenreich DJ, Saenz C, Kunces LJ, Creighton BC, Bartley JM, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65(3):100–10. https://doi.org/10.1016/j.metabol.2015.10.028.
Article
CAS
PubMed
Google Scholar
Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JA. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol. 2016;594(15):4389–405. https://doi.org/10.1113/JP271934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas S, Romance R, Petro JL, Bonilla DA, Galancho I, Espinar S, et al. Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial. J Int Soc Sports Nutr. 2018;15(1):31. https://doi.org/10.1186/s12970-018-0236-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
McSwiney FT, Wardrop B, Hyde PN, Lafountain RA, Volek JS, Doyle L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism. 2018;81:25–34. https://doi.org/10.1016/j.metabol.2017.10.010.
Article
CAS
PubMed
Google Scholar
Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178–87. https://doi.org/10.1017/S0007114513000548.
Article
CAS
PubMed
Google Scholar
Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci. 2015;15(1):13–20. https://doi.org/10.1080/17461391.2014.959564.
Article
PubMed
Google Scholar
Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA. Deploying an interactive machine learning system in an evidence-based practice center: abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. Miami: Association for Computing Machinery; 2012. p. 819–24.
Chapter
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.
Article
PubMed
PubMed Central
Google Scholar
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
Article
PubMed
Google Scholar
Greene DA, Varley BJ, Hartwig TB, Chapman P, Rigney M. A low-carbohydrate Ketogenic diet reduces body mass without compromising performance in powerlifting and Olympic weightlifting athletes. J Strength Cond Res. 2018;32(12):3373–82. https://doi.org/10.1519/JSC.0000000000002904.
Article
PubMed
Google Scholar
Prins PJ, Noakes TD, Welton GL, Haley SJ, Esbenshade NJ, Atwell AD, et al. High rates of fat oxidation induced by a low-carbohydrate, high-fat diet, do not impair 5-km running performance in competitive recreational athletes. J Sports Sci Med. 2019;18(4):738–50.
PubMed
PubMed Central
Google Scholar
Heatherly AJ, Killen LG, Smith AF, Waldman HS, Seltmann CL, Hollingsworth A, et al. Effects of ad libitum low-carbohydrate high-fat dieting in middle-age male runners. Med Sci Sports Exerc. 2018;50(3):570–9. https://doi.org/10.1249/MSS.0000000000001477.
Article
CAS
PubMed
Google Scholar
Nazarewicz RR, Ziolkowski W, Vaccaro PS, Ghafourifar P. Effect of short-term ketogenic diet on redox status of human blood. Rejuvenation Res. 2007;10(4):435–40. https://doi.org/10.1089/rej.2007.0540.
Article
CAS
PubMed
Google Scholar
Dostal T, Plews DJ, Hofmann P, Laursen PB, Cipryan L. Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise, and cardiac autonomic regulation: non-randomized parallel-group study. Front Physiol. 2019;10:912. https://doi.org/10.3389/fphys.2019.00912.
Article
PubMed
PubMed Central
Google Scholar
Vargas-Molina S, Petro JL, Romance R, Kreider RB, Schoenfeld BJ, Bonilla DA, et al. Effects of a ketogenic diet on body composition and strength in trained women. J Int Soc Sports Nutr. 2020;17(1):19. https://doi.org/10.1186/s12970-020-00348-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kephart WC, Pledge CD, Roberson PA, Mumford PW, Romero MA, Mobley CB, et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. 2018;6(1):1. https://doi.org/10.3390/sports6010001.
LaFountain RA, Miller VJ, Barnhart EC, Hyde PN, Crabtree CD, McSwiney FT, et al. Extended Ketogenic diet and physical training intervention in military personnel. Mil Med. 2019;184(9–10):e538–e47. https://doi.org/10.1093/milmed/usz046.
Gregory RM, Hamdan H, Torisky D, Akers J. A low-carbohydrate ketogenic diet combined with 6-weeks of crossfit training improves body composition and performance. Int J Sports Exerc Med. 2017;3:1–10.
Article
Google Scholar
Paoli A, Cenci L, Pompei P, Sahin N, Bianco A, Neri M, et al. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients. 2021;13(2):374. https://doi.org/10.3390/nu13020374.
Tsafnat G, Glasziou P, Choong MK, Dunn A, Galgani F, Coiera E. Systematic review automation technologies. Syst Rev. 2014;3(1):74. https://doi.org/10.1186/2046-4053-3-74.
Article
PubMed
PubMed Central
Google Scholar
Hoyt RW, Opstad PK, Haugen AH, DeLany JP, Cymerman A, Friedl KE. Negative energy balance in male and female rangers: effects of 7 d of sustained exercise and food deprivation. Am J Clin Nutr. 2006;83(5):1068–75. https://doi.org/10.1093/ajcn/83.5.1068.
Article
CAS
PubMed
Google Scholar
Siri WE. The gross composition of the body. Adv Biol Med Phys. 1956;4:239–80. https://doi.org/10.1016/B978-1-4832-3110-5.50011-X.
Article
CAS
PubMed
Google Scholar
Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr. 1999;69(5):833–41. https://doi.org/10.1093/ajcn/69.5.833.
Article
CAS
PubMed
Google Scholar
Tinsley GM, Graybeal AJ, Moore ML, Nickerson BS. Fat-free mass characteristics of muscular physique athletes. Med Sci Sports Exerc. 2019;51(1):193–201. https://doi.org/10.1249/MSS.0000000000001749.
Article
PubMed
Google Scholar
Gomez-Arbelaez D, Bellido D, Castro AI, Ordoñez-Mayan L, Carreira J, Galban C, et al. Body composition changes after very-low-calorie Ketogenic diet in obesity evaluated by 3 standardized methods. J Clin Endocrinol Metab. 2017;102(2):488–98. https://doi.org/10.1210/jc.2016-2385.
Article
PubMed
Google Scholar
Bingham SA. Limitations of the various methods for collecting dietary intake data. Ann Nutr Metab. 1991;35(3):117–27. https://doi.org/10.1159/000177635.
Article
CAS
PubMed
Google Scholar
McClernon FJ, Yancy WS Jr, Eberstein JA, Atkins RC, Westman EC. The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity (Silver Spring). 2007;15(1):182–7. https://doi.org/10.1038/oby.2007.516.
Article
CAS
Google Scholar
Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142(6):403–11. https://doi.org/10.7326/0003-4819-142-6-200503150-00006.
Article
CAS
PubMed
Google Scholar
Rodin J, Wack J, Ferrannini E, DeFronzo RA. Effect of insulin and glucose on feeding behavior. Metabolism. 1985;34(9):826–31. https://doi.org/10.1016/0026-0495(85)90106-4.
Article
CAS
PubMed
Google Scholar
Holt SH, Miller JB. Increased insulin responses to ingested foods are associated with lessened satiety. Appetite. 1995;24(1):43–54. https://doi.org/10.1016/S0195-6663(95)80005-0.
Article
CAS
PubMed
Google Scholar
Hall KD. A review of the carbohydrate-insulin model of obesity. Eur J Clin Nutr. 2017;71(3):323–6. https://doi.org/10.1038/ejcn.2016.260.
Article
CAS
PubMed
Google Scholar
Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785–807. https://doi.org/10.1113/JP273230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw DM, Merien F, Braakhuis A, Maunder ED, Dulson DK. Effect of a Ketogenic diet on submaximal exercise capacity and efficiency in runners. Med Sci Sports Exerc. 2019;51(10):2135–46. https://doi.org/10.1249/MSS.0000000000002008.
Article
CAS
PubMed
Google Scholar
Burke LM, Sharma AP, Heikura IA, Forbes SF, Holloway M, McKay AKA, et al. Crisis of confidence averted: impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS One. 2020;15(6):e0234027. https://doi.org/10.1371/journal.pone.0234027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke LM, Whitfield J, Heikura IA, MLR R, Tee N, Forbes SF, et al. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J Physiol. 2021;599(3):771–90.
Whitfield J, Burke LM, Mckay AKA, Heikura IA, Hall R, Fensham N, et al. Acute Ketogenic Diet and Ketone Ester Supplementation Impairs Race Walk Performance. Med Sci Sports Exerc. 2021;53(4):776–84.
Murtaza N, Burke LM, Vlahovich N, Charlesson B, O'Neill HM, Ross ML, et al. Analysis of the Effects of Dietary Pattern on the Oral Microbiome of Elite Endurance Athletes. Nutrients. 2019;11(3):614. https://doi.org/10.3390/nu11030614.
Murphy NE, Carrigan CT, Margolis LM. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv Nutr. 2021;12(1):223–33.
Langfort J, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uscilko H. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J Physiol Pharmacol. 1996;47(2):361–71.
CAS
PubMed
Google Scholar
Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uscitko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128–33. https://doi.org/10.1007/s004210050224.
Article
CAS
PubMed
Google Scholar
Egan B, D'Agostino DP. Fueling performance: ketones enter the mix. Cell Metab. 2016;24(3):373–5. https://doi.org/10.1016/j.cmet.2016.08.021.
Article
CAS
PubMed
Google Scholar
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol. 2017;595(9):2857–71. https://doi.org/10.1113/JP273185.
Article
CAS
PubMed
Google Scholar
Sherrier M, Li H. The impact of keto-adaptation on exercise performance and the role of metabolic-regulating cytokines. Am J Clin Nutr. 2019;110(3):562–73. https://doi.org/10.1093/ajcn/nqz145.
Article
PubMed
Google Scholar
Pinckaers PJ, Churchward-Venne TA, Bailey D, van Loon LJ. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sports Med. 2017;47(3):383–91. https://doi.org/10.1007/s40279-016-0577-y.
Article
PubMed
Google Scholar
Webster CC, van Boom KM, Armino N, Larmuth K, Noakes TD, Smith JA, et al. Reduced glucose tolerance and skeletal muscle GLUT4 and IRS1 content in cyclists habituated to a long-term low-carbohydrate, high-fat diet. Int J Sport Nutr Exerc Metab. 2020, p. 1–8. https://doi.org/10.1123/ijsnem.2019-0359.
Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab. 2004;286(2):E217–25. https://doi.org/10.1152/ajpendo.00159.2003.
Article
CAS
PubMed
Google Scholar
Howard EE, Margolis LM. Intramuscular Mechanisms Mediating Adaptation to Low-Carbohydrate, High-Fat Diets during Exercise Training. Nutrients. 2020;12(9):2496. https://doi.org/10.3390/nu12092496.
Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, et al. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr. 2003;77(2):313–8. https://doi.org/10.1093/ajcn/77.2.313.
Article
CAS
PubMed
Google Scholar
Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch AM, et al. Exercising with low muscle glycogen content increases fat oxidation and decreases endogenous, but not exogenous carbohydrate oxidation. Metabolism. 2019;97:1–8. https://doi.org/10.1016/j.metabol.2019.05.003.
Article
CAS
PubMed
Google Scholar
Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res. 2010;20(2):124–37. https://doi.org/10.1038/cr.2010.13.
Article
CAS
PubMed
Google Scholar
Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, et al. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 2006;4(5):407–14. https://doi.org/10.1016/j.cmet.2006.10.003.
Article
CAS
PubMed
Google Scholar
Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A. 2003;100(26):15924–9. https://doi.org/10.1073/pnas.0306981100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980;60(1):143–87. https://doi.org/10.1152/physrev.1980.60.1.143.
Article
CAS
PubMed
Google Scholar
Fery F, Balasse EO. Ketone body turnover during and after exercise in overnight-fasted and starved humans. Am J Phys. 1983;245(4):E318–25.
CAS
Google Scholar
Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256–68. https://doi.org/10.1016/j.cmet.2016.07.010.
Article
CAS
PubMed
Google Scholar
Balasse E, Ooms HA. Changes in the concentrations of glucose, free fatty acids, insulin and ketone bodies in the blood during sodium beta-hydroxybutyrate infusions in man. Diabetologia. 1968;4(3):133–5. https://doi.org/10.1007/BF01219433.
Article
CAS
PubMed
Google Scholar
Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 2005;280(29):26649–52. https://doi.org/10.1074/jbc.C500213200.
Article
CAS
PubMed
Google Scholar
Bjorntorp P, Schersten T. Effect of beta-hydroxybutyrate on lipid mobilization. Am J Phys. 1967;212(3):683–7. https://doi.org/10.1152/ajplegacy.1967.212.3.683.
Article
CAS
Google Scholar
Shaw DM, Merien F, Braakhuis A, Maunder E, Dulson DK. Exogenous ketone supplementation and Keto-adaptation for endurance performance: disentangling the effects of two distinct metabolic states. Sports Med. 2020;50(4):641–56. https://doi.org/10.1007/s40279-019-01246-y.
Article
PubMed
Google Scholar
Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr. 2012;3(2):119–26. https://doi.org/10.3945/an.111.001792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mettler S, Mitchell N, Tipton KD. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med Sci Sports Exerc. 2010;42(2):326–37. https://doi.org/10.1249/MSS.0b013e3181b2ef8e.
Article
CAS
PubMed
Google Scholar
Mero AA, Huovinen H, Matintupa O, Hulmi JJ, Puurtinen R, Hohtari H, et al. Moderate energy restriction with high protein diet results in healthier outcome in women. J Int Soc Sports Nutr. 2010;7(1):4. https://doi.org/10.1186/1550-2783-7-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Areta JL, Burke LM, Camera DM, West DW, Crawshay S, Moore DR, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989–97. https://doi.org/10.1152/ajpendo.00590.2013.
Article
CAS
PubMed
Google Scholar
Hector AJ, McGlory C, Damas F, Mazara N, Baker SK, Phillips SM. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J. 2018;32(1):265–75.
Gwin JA, Church DD, Hatch-McChesney A, Howard EE, Carrigan CT, Murphy NE, et al. Effects of high versus standard essential amino acid intakes on whole-body protein turnover and mixed muscle protein synthesis during energy deficit: a randomized, crossover study. Clin Nutr. 2021;40(3):767–77.
Vandoorne T, De Smet S, Ramaekers M, Van Thienen R, De Bock K, Clarke K, et al. Intake of a ketone Ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen Resynthesis in human muscle. Front Physiol. 2017;8:310. https://doi.org/10.3389/fphys.2017.00310.
Article
PubMed
PubMed Central
Google Scholar
Carbone JW, McClung JP, Pasiakos SM. Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Adv Nutr. 2019;10(1):70–9. https://doi.org/10.1093/advances/nmy087.
Article
PubMed
Google Scholar
Ashtary-Larky D, Bagheri R, Asbaghi O, Tinsley GM, Kooti W, Abbasnezhad A, et al. Effects of resistance training combined with a ketogenic diet on body composition: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2021:1–16.
Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media Mol Imaging. 2019;2019:3548284.
Article
PubMed
PubMed Central
Google Scholar