Beelen M, Burke LM, Gibala MJ, van Loon LJC. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.
Article
CAS
PubMed
Google Scholar
Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International Society of Sports Nutrition Position Stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alghannam AF. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl Physiol Nutr Metab. 2011;36(5):748–57.
Article
CAS
PubMed
Google Scholar
Highton J, Twist C, Lamb K, Nicholas C. Carbohydrate-protein coingestion improves multiple-sprint running performance. J Sports Sci. 2013;31(4):361–9.
Article
PubMed
Google Scholar
Ivy JL, Ding Z, Hwang H, Cialdella-Kam LC, Morrison PJ. Post exercise carbohydrate-protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids. 2008;35(1):89–97.
Article
CAS
PubMed
Google Scholar
Wang W, Ding Z, Solares GJ, Choi S, Wang B, Yoon A, et al. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats. PLoS One. 2017;12(3):e0173809.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hara D, Morrison PJ, Ding Z, Ivy JL. Effect of carbohydrate-protein supplementation postexercise on rat muscle glycogen synthesis and phosphorylation of proteins controlling glucose storage. Metabolism. 2011;60(10):1406–15.
Article
CAS
PubMed
Google Scholar
Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M. Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats. Amino Acids. 2010;38(4):1109–15.
Article
CAS
PubMed
Google Scholar
Ferguson-Stegall L, McCleave EL, Ding Z, Doerner PG, Wang B, Liao Y, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25(5):1210–24.
Article
PubMed
Google Scholar
Karp JR, Johnston JD, Tecklenburg S, Mickleborough TD, Fly AD, Stager JM. Chocolate milk as a post-exercise recovery aid. Int J Sport Nutr Exerc Metab. 2006;16(1):78–91.
Article
PubMed
Google Scholar
Spaccarotella KJ, Andzel WD. The effects of low fat chocolate milk on postexercise recovery in collegiate athletes. J Strength Cond Res. 2011;25(12):3456–60.
Article
PubMed
Google Scholar
Born KA, Dooley EE, Cheshire PA, McGill LE, Cosgrove JM, Ivy JL, et al. Chocolate milk versus carbohydrate supplements in adolescent athletes: a field based study. J Int Soc Sports Nutr. 2019;16(1):6.
Article
PubMed
PubMed Central
Google Scholar
Burke LM. Nutrition for post-exercise recovery. Aust J Sci Med Sport. 1997;29(1):3–10.
CAS
PubMed
Google Scholar
Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite. 2016;98:80–8.
Article
PubMed
Google Scholar
Thomas K, Morris P, Stevenson E. Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Appl Physiol Nutr Metab. 2009;34(1):78–82.
Article
CAS
PubMed
Google Scholar
Pritchett K, Bishop P, Pritchett R, Green M, Katica C. Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl Physiol Nutr Metab. 2009;34(6):1017–22.
Article
PubMed
CAS
Google Scholar
Li XE, Jervis SM, Drake MA. Examining extrinsic factors that influence product acceptance: a review. J Food Sci. 2015;80(5):R901–9.
Article
CAS
PubMed
Google Scholar
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. In: Instrução Normativa N° 16, de 23 de agosto de 2005. Regulamento técnico de identidade e qualidade de bebidas lácteas. Diário Oficial da República Federativa do Brasil; 2005.
Google Scholar
Brasil. Agência Nacional de Vigilância Sanitária-Anvisa. Resolução n°. 12, de 2 de janeiro de 2001. Regulamento Técnico sobre padrões microbiológicos para alimentos. Diário Oficial da República Federativa do Brasil. 2001; (7):45–53.
Google Scholar
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition Position Stand: protein and exercise. Int Soc Sports Nutr. 2017;14:20.
Article
CAS
Google Scholar
Jentjens RL, van Loon LJ, Mann CH, Wagenmakers AJ, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91(2):839–46.
Article
CAS
PubMed
Google Scholar
Kaastra B, Manders RJF, Van Breda E, Kies A, Jeukendrup AE, Keizer HA, et al. Effects of increasing insulin secretion on acute postexercise blood glucose disposal. Med Sci Sports Exerc. 2006;38(2):268–75.
Article
CAS
PubMed
Google Scholar
Koopman R, Wagenmakers AJM, Manders RJF, Zorenc AHG, Senden JMG, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005;288(4):E645–53.
Article
CAS
PubMed
Google Scholar
Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2015;47(3):547–55.
Article
CAS
PubMed
Google Scholar
Manders RJ, Koopman R, Sluijsmans WE, van den Berg R, Verbeek K, Saris WH, et al. Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. J Nutr. 2006;136(5):1294–9.
Article
CAS
PubMed
Google Scholar
Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 2013; 591(Pt 9):2319–2331.
Elango R, Chapman K, Rafii M, Ball RO, Pencharz PB. Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am J Clin Nutr. 2012;96(4):759–67.
Article
CAS
PubMed
Google Scholar
Pencharz PB, Elango R, Ball RO. Determination of the tolerable upper intake level of leucine in adult men. J Nutr. 2012;142(12):2220S–4S.
Article
CAS
PubMed
Google Scholar
da Silva CD, Machado G, Fernandes AA, Teoldo I, Pimenta EM, Marins JCB, et al. Muscle damage-based recovery strategies can be supported by predictive capacity of specific Global Positioning System Accelerometry parameters immediately a post-soccer match-Load. J Strength Cond Res. 2018; in press.
Silva CD, Lovell R. External validity of T-SAFT90: a soccer-simulation including technical and jumping activities. Int J Sports Physiol Perform. 2020;18:1–7.
Google Scholar
Monteiro MC, Vannucchi H, Dutra de Oliveira JE. Use of the demonstrative method for the quantitative evaluation of food intake. Arch Latinoam Nutr. 1986;36(2):260–7.
CAS
PubMed
Google Scholar
Volterman KA, Obeid J, Wilk B, Timmons BW. Effect of milk consumption on rehydration in youth following exercise in the heat. Appl Physiol Nutr Metab. 2014;39(11):1257–64.
Article
CAS
PubMed
Google Scholar
Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff RV, Rich BS, et al. National athletic trainers' association position statement: Fluid replacement for athletes. J Athl Train. 2000;35(2):212–24.
CAS
PubMed
PubMed Central
Google Scholar
Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.
Article
CAS
PubMed
Google Scholar
Jeukendrup AE, Vet-Joop K, Sturk A, Stegen JH, Senden J, Saris WH, et al. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci. 2000;98(1):47–55.
Article
CAS
Google Scholar
Meilgaard M, Civille G, Carr B. Sensory Evaluation Techniques. 4th ed. Boca Raton: CRC Press/Taylor & Francis; 2006.
Dutcosky SD. Análise sensorial de alimentos. Curitiba: Champagnat – Pucpress; 2013.
Agresti A, Caffo B. Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. Am Stat. 2000;54(4):280–8.
Google Scholar
Dellal A, Da Silva CD, Hill-Haas S, Wong DP, Natali AJ, De Lima JRP, et al. Heart-rate monitoring in soccer: interest and limits during competitive match-play and training - Practical application. J Strength Cond Res. 2012;26(10):2890–906.
Article
Google Scholar
Blouet C, Jo Y, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009;29(26):8302–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leiper JB, Prentice AS, Wrightson C, Maughan RJ. Gastric emptying of a carbohydrate-electrolyte drink during a soccer match. Med Sci Sports Exerc. 2001;33(11):1932–8.
Article
CAS
PubMed
Google Scholar
Leiper JB, Nicholas CW, Ali A, Williams C, Maughan RJ. The effect of intermittent high-intensity running on gastric emptying of fluids in man. Med Sci Sports Exerc. 2005;37(2):240–7.
Article
PubMed
Google Scholar
de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(Suppl 1):S79–85.
Article
PubMed
Google Scholar
Gonzalez JT, Rumbold PLS, Stevenson EJ. Appetite sensations and substrate metabolism at rest, during exercise, and recovery: impact of a high-calcium meal. Appl Physiol Nutr Metab. 2013;38(12):1260–7.
Article
CAS
PubMed
Google Scholar
Pflanzer SB, Cruz AGD, Hatanaka CL, Mamede PL, Cadena R, Faria JAF, et al. Perfil sensorial e aceitação de bebida láctea achocolatada. Food Sci Technol. 2010;30:391–8.
Article
Google Scholar
Bangsbo J. Energy demands in competitive soccer. J Sports Sci. 1994;12:S5–12.
Article
PubMed
Google Scholar