The results of the meta-analysis show that caffeine may be an effective ergogenic aid for muscle strength and power. The pooled effects of caffeine on performance were small to medium. It is important to note that even small improvements in performance in some sports may translate to meaningful differences in competitive outcomes [27, 28]. A previous meta-analysis did not show a significant effect of caffeine supplementation on muscle strength [2], and the results of individual studies investigating caffeine’s effects on muscle power have not been previously pooled in a meta-analysis. Our novel results showing that caffeine may induce practically meaningful improvements in muscle strength and power can, therefore, be used to inform athletes, coaches, and sports nutritionists, as well as future research endeavors in this area, about the ergogenic potential of caffeine.
Strength outcomes
Upper and lower body strength
The subgroup analysis indicated a significant increase in upper body, but not lower body strength, with caffeine ingestion. These results are somewhat unexpected, as Warren et al. [10] suggested that larger muscles, such as those of the lower body, have a greater motor unit recruitment capability with caffeine intake than smaller muscles, such as those of the arm. Motor unit recruitment, in addition to the reduced rate of perceived exertion and the central effects of adenosine on neurotransmission, arousal, and pain perception, are considered to be underlying mechanisms by which caffeine can enhance performance, although the exact mechanisms remain to be fully elucidated [29, 30]. Based on the current results, it may be surmised that caffeine is a useful ergogenic aid for achieving acute increases in maximal upper body strength. In the included studies, lower body maximal strength was evaluated using only leg press and squat (machine-based and free weight) tests. Two studies [4, 16] used a free weight exercise (barbell back squat), and both reported a significant increase in lower body strength. Warren et al. [10] concluded that caffeine ingestion might increase lower body isometric strength. Our findings do not indicate a strength increasing effect with caffeine ingestion for lower body dynamic strength. It is worth noting that in general, the included studies did not report on the reliability of their strength assessment, indicating potential reasons for the surprising findings for lower body strength. Further research is needed to examine the effects of caffeine on dynamic strength. Such studies may benefit from using a larger variety of dynamic lower body strength tests, as the current findings are mostly limited to a small selection of primarily machine-based tests.
Training status
The subgroup analysis for training status indicated no significant differences in maximal strength in trained (p = 0.076) and untrained individuals (p = 0.144). The meta-analysis of the three studies among untrained individuals was limited by small overall sample size (n = 32). It may be considered indicative that two of three individual studies reported significant differences in maximal strength with caffeine ingestion, but more individual studies on this topic are needed before drawing firm conclusions. Training status seems to play a significant role in response to caffeine intake in other forms of physical activity, such as swimming, with greater improvements observed in trained athletes [31]. However, it remains unclear whether the same applies to strength outcomes. More studies are needed before confidently drawing conclusions about the potential differences in effects of caffeine ingestion on muscle strength of trained and untrained individuals.
Sex
The subgroup analysis in males showed a significant improvement in strength with caffeine ingestion. The subgroup analysis for females was limited by small sample size, as only three studies [5, 12, 14] were found meeting the inclusion criteria. The landmark study by Goldstein et al. [5] reported a significant increase in the 1RM bench press in a cohort of resistance trained females. However, the effect size was very small (SMD = 0.07), thereby limiting the practical significance of the finding. Another study among female participants was performed by Sabblah et al. [14]. The researchers reported an SMD of 0.33 for increases in upper body strength with caffeine ingestion. However, the study employed a single-blind design and hence provided evidence of somewhat lower methodological quality compared to other studies. Additionally, the participants in the study from Sabblah et al. [14] exhibited lower levels of fitness than the participants in the study from Goldstein et al. [5], with marked disparities observed for 1RM strength (32 kg and 52 kg, respectively). None of the studies that included female participants controlled for the potential variability attributable to metabolic alterations across the menstrual cycle [32], which is a limitation of the current body of literature. Additional rigorously controlled studies are needed to provide clarity on the topic.
Caffeine form
The subgroup analysis indicated significant increases in strength after the ingestion of caffeine in the capsule form. The meta-analysis of the effects of the liquid form of caffeine included only three studies and did not report a significant effect. It is likely that the analysis was limited due to the small sample size (n = 50). Only one study [16] used caffeine in the form of a gel. Previous studies indicate that there are no practically meaningful pharmacokinetic differences between these routes of caffeine ingestion [33]; as such, it is unlikely that marked differences exist when comparing ergogenic effects of various forms of caffeine administration. Further investigations are needed for liquid forms of caffeine and others that have rarely or never been studied in this context, such as gum and gel.
Power outcomes
The meta-analysis supports caffeine as an effective ergogenic aid for achieving acute increases in muscle power expressed as vertical jump height. These results may have considerable applicability to many sports, including basketball and volleyball, in which muscle power and jumping ability are highly related to performance outcomes. The magnitude of acute improvement in vertical jump height found in the current analysis for a single caffeine ingestion is roughly equivalent to the effects of ~ 4 weeks of plyometric training [34]. The current analysis included only studies that used vertical jump as the power outcome; as such, it is possible that caffeine ingestion could produce somewhat different effects on other types of muscle power tests. However, a recent meta-analysis also showed a significant performance-enhancing effect of caffeine on the Wingate test, which is a common test of power [35]. Furthermore, most of the included studies used countermovement jump for assessing vertical jump; it remains to be explored whether the caffeine ingestion would produce different effects on other forms of vertical jumping. In addition, all of the included studies evaluated these effects in isolated conditions that may not accurately reflect in-game, sport-specific jumping tasks. More evidence may be needed to determine if the performance-enhancing effects of caffeine would transfer in the context of individual sports and/or team-sport matches [36].
While previous research [37] has shown an increase in countermovement jump height after ingestion of a caffeine-containing energy drink, it was unclear if the effect was attributable to the caffeine content or the presence of other substances, such as taurine. A recent meta-analysis on caffeinated energy drinks found a significant association between their taurine content and performance, but not between their caffeine content and performance [38]. As postulated by Bloms et al. [8], motor schema might play a role when assessing the association between caffeine and muscle power. Bloms et al. [8] tested the effect of caffeine on muscle power among a cohort of athletes and reported significant increases in jumping height. By contrast, Gauvin [26] reported no effects of caffeine ingestion on muscle power in a group of untrained men, with no previous experience in the exercise. The subgroup analysis for training status indicated a significant effect for athletes, but not for non-athletes. It may be suggested that future studies should control for this confounding factor by including only participants with or without previous experience in the task, or by performing initial familiarization sessions.
None of the remaining subgroup analysis showed a significant effect of caffeine. These results might be due to the small sample sizes in different subgroup analysis. More studies are needed before reaching conclusions about context-specific effects of caffeine. Furthermore, while the body of evidence evaluating effects of caffeine on muscle power is still limited; the current meta-analysis shows promising findings, but more studies are needed on this topic. Specifically, studies including different forms of vertical jumping and sport-specific jumping tasks, different population groups, larger sample sizes, and different doses and forms of caffeine are required.
Methodological quality
The PEDro scale showed good to excellent quality among the included studies, suggesting that the results of the current meta-analysis were not confounded by the inclusion of studies with poor research methodology. Only two studies [6, 25] reported receiving funding from parties that may have had commercial interest for conducting the research, so it is improbable that the overall results of the current study were significantly affected by financial bias. To further improve the quality of evidence, future studies should use a double-blind rather than a single-blind design and assess the effectiveness of the blinding. Only three studies [3, 22, 24] reported assessing the effectiveness of the blinding. This information is of importance as participants’ recognition of the caffeine trial may influence outcomes [39], because psychological effects of ‘expectancy’ and ‘belief’ might have an impact on performance [40]. In some studies, performance-enhancing responses were found with perceived ‘caffeine’ ingestion, when in fact, a placebo was consumed [41]. Future studies examining this topic should include a questionnaire of perception of the trials to prevent possible issues associated with such confounding.
While the inclusion of doctoral and master’s theses may be considered as a limitation of this review, their inclusion is supported by their high methodological quality scores. Therefore, the inclusion of such studies may be regarded as a strength rather than a limitation, as it would be inappropriate to omit high-quality contributions to the literature from a comprehensive systematic review. A limitation of the current review is the low number of studies included in the subgroup analysis. Secondly, a limitation is that no studies were found for age groups other than adolescents and young adults. The findings, therefore, pertain mainly to young individuals and cannot be generalized to other age groups. Furthermore, due to the high degree of inter-individual variability of effects [42], these results should be interpreted with caution when it comes to prescribing caffeine supplementation to individuals. Individuals should also assess their susceptibility to possible side effects as reported in the literature, such as tremor, insomnia, elevated heart rate, headache, abdominal/gut discomfort, muscle soreness, and inability to verbally communicate and stay focused. These side effects may be enhanced in naive caffeine users [3, 5], so extra precaution may be warranted in such individuals.