Andres S, Ziegenhagen R, Trefflich I, Pevny S, Schultrich K, Braun H, et al. Creatine and creatine forms intended for sports nutrition. Mol Nutr Food Res. 2017;61(6):1600772. https://doi.org/10.1002/mnfr.201600772.
Article
CAS
Google Scholar
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18.
Article
Google Scholar
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, et al. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr. 2021;18(1):13. https://doi.org/10.1186/s12970-021-00412-w.
Article
PubMed
PubMed Central
Google Scholar
Mesa JLM, Ruiz JR, González-Gross MM, Gutiérrez Sáinz A, Castillo Garzón MJ. Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med Auckl NZ. 2002;32(14):903–44. https://doi.org/10.2165/00007256-200232140-00003.
Article
Google Scholar
Schlattner U, Klaus A, Ramirez Rios S, Guzun R, Kay L, Tokarska-Schlattner M. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids. 2016;48(8):1751–74. https://doi.org/10.1007/s00726-016-2267-3.
Article
CAS
PubMed
Google Scholar
Peral MJ, García-Delgado M, Calonge ML, Durán JM, De La Horra MC, Wallimann T, et al. Human, rat and chicken small intestinal Na+ − cl- -creatine transporter: functional, molecular characterization and localization. J Physiol. 2002;545(1):133–44. https://doi.org/10.1113/jphysiol.2002.026377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement Creatine. Clin Pharmacokinet. 2003;42(6):557–74. https://doi.org/10.2165/00003088-200342060-00005.
Article
CAS
PubMed
Google Scholar
Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6.
Article
Google Scholar
Herda TJ, Beck TW, Ryan ED, Smith AE, Walter AA, Hartman MJ, et al. Effects of creatine monohydrate and polyethylene glycosylated creatine supplementation on muscular strength, endurance, and power output. J Strength Cond Res. 2009;23(3):818–26. https://doi.org/10.1519/JSC.0b013e3181a2ed11.
Article
PubMed
Google Scholar
Kerksick CM, Wilborn CD, Campbell WI, Harvey TM, Marcello BM, Roberts MD, et al. The effects of Creatine monohydrate supplementation with and without D-Pinitol on resistance training adaptations. J Strength Cond Res. 2009;23(9):2673–82. https://doi.org/10.1519/JSC.0b013e3181b3e0de.
Article
PubMed
Google Scholar
Camic CL, Hendrix CR, Housh TJ, Zuniga JM, Mielke M, Johnson GO, et al. The effects of polyethylene glycosylated Creatine supplementation on muscular strength and power. J Strength Cond Res. 2010;24(12):3343–51. https://doi.org/10.1519/JSC.0b013e3181fc5c5c.
Article
PubMed
Google Scholar
Camic CL, Housh TJ, Zuniga JM, Traylor DA, Bergstrom HC, Schmidt RJ, et al. The effects of polyethylene glycosylated Creatine supplementation on anaerobic performance measures and body composition. J Strength Cond Res. 2014;28(3):825–33. https://doi.org/10.1519/JSC.0b013e3182a361a5.
Article
PubMed
Google Scholar
Wang CC, Fang CC, Lee YH, Yang MT, Chan KH. Effects of 4-week Creatine supplementation combined with complex training on muscle damage and sport performance. Nutrients. 2018;10(11). https://doi.org/10.3390/nu10111640.
Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol. 1996;81(1):232–7. https://doi.org/10.1152/jappl.1996.81.1.232.
Article
CAS
PubMed
Google Scholar
Jäger R, Purpura M, Shao A, Inoue T, Kreider RB. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40(5):1369–83. https://doi.org/10.1007/s00726-011-0874-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jäger R, Harris RC, Purpura M, Francaux M. Comparison of new forms of creatine in raising plasma creatine levels. J Int Soc Sports Nutr. 2007;4(1):17. https://doi.org/10.1186/1550-2783-4-17.
Article
PubMed
PubMed Central
Google Scholar
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.
Article
CAS
PubMed
Google Scholar
Reid MB. Reactive oxygen species as agents of fatigue. Med Sci Sports Exerc. 2016;48(11):2239–46. https://doi.org/10.1249/MSS.0000000000001006.
Article
CAS
PubMed
Google Scholar
McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9(1):19. https://doi.org/10.1186/1550-2783-9-19.
Article
PubMed
PubMed Central
Google Scholar
Bowtell J, Kelly V. Fruit-derived polyphenol supplementation for athlete recovery and performance. Sports Med Auckl Nz. 2019;49(Suppl 1):3–23. https://doi.org/10.1007/s40279-018-0998-x.
Article
Google Scholar
Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10). https://doi.org/10.3390/nu11102389.
Eckerson JM, Stout JR, Moore GA, Stone NJ, Iwan KA, Gebauer AN, et al. Effect of creatine phosphate supplementation on anaerobic working capacity and body weight after two and six days of loading in men and women. J Strength Cond Res. 2005;19(4):756–63. https://doi.org/10.1519/R-16924.1.
Article
PubMed
Google Scholar
Anders JPV, Keller JL, Smith CM, Hill EC, Housh TJ, Schmidt RJ, et al. The effects of Asparagus Racemosus supplementation plus 8 weeks of resistance training on muscular strength and endurance. J Funct Morphol Kinesiol. 2020;5(1):4. https://doi.org/10.3390/jfmk5010004.
Article
PubMed Central
Google Scholar
Thorstensson A, Karlsson J. Fatiguability and fibre composition of human skeletal muscle. Acta Physiol Scand. 1976;98(3):318–22. https://doi.org/10.1111/j.1748-1716.1976.tb10316.x.
Article
CAS
PubMed
Google Scholar
Cybex Division of Lumex Inc. Cybed II User Manual. Ronkonkoma: Cybex Division of Lumex Inc; 1983.
Google Scholar
Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40. https://doi.org/10.1519/15184.1.
Article
PubMed
Google Scholar
Keppel G. Design and analysis: a researcher’s handbook. 3rd ed. Englewood Cliffs: Prentice Hall; 1991.
Google Scholar
Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41(5):582–92. https://doi.org/10.1097/01.MLR.0000062554.74615.4C.
Article
PubMed
Google Scholar
Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–90. https://doi.org/10.1037/1040-3590.6.4.284.
Article
Google Scholar
Perrin DH. Isokinetic Exercise and Assessment. Human Kinetics; 1993.
Google Scholar
Neltner TJ, Anders JPV, Keller JL, Smith RW, Housh TJ, Schmidt RJ, et al. Ipsilateral and contralateral torque responses to bilateral and unilateral maximal, fatiguing, isokinetic leg extensions. Int J Kinesiol Sports Sci. 2020;8(4):25–33. https://doi.org/10.7575/aiac.ijkss.v.8n.4p.25.
Article
Google Scholar
Balsom B, Ekblom B, Soerlund K, Sjodin K, Hultman E. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports. 1993;3:143–9.
Article
Google Scholar
Gilliam JD, Hohzorn C, Martin D, Trimble MH. Effect of oral creatine supplementation on isokinetic torque production. Med Sci Sports Exerc. 2000;32(5):993–6. https://doi.org/10.1097/00005768-200005000-00017.
Article
CAS
PubMed
Google Scholar
Sarshin A, Fallahi V, Forbes SC, Rahimi A, Koozehchian MS, Candow DG, et al. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J Int Soc Sports Nutr. 2021;18(1):10. https://doi.org/10.1186/s12970-021-00407-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner M, Rankin JW, Sebolt D. The effect of creatine supplementation during resistance training in women. J Strength Cond Res. 2000;14:207–13.
Google Scholar
Eckerson JM, Bull AA, Moore GA. Effect of thirty days of Creatine supplementation with phosphate salts on anaerobic working capacity and body weight in men. J Strength Cond Res. 2008;22(3):826–32. https://doi.org/10.1519/JSC.0b013e31816a40ad.
Article
PubMed
Google Scholar
Peeters BM, Lantz CD, Mayhew JL. Effect of Oral Creatine monohydrate and Creatine phosphate supplementation on maximal strength indices, body composition, and blood pressure. J Strength Cond Res. 1999;13:3–9.
Google Scholar
Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8:1–7.
Google Scholar
Schoch RD, Willoughby D, Greenwood M. The regulation and expression of the Creatine transporter: a brief review of Creatine supplementation in humans and animals. J Int Soc Sports Nutr. 2006;3(1):60. https://doi.org/10.1186/1550-2783-3-1-60.
Article
PubMed
PubMed Central
Google Scholar
Hummer E, Suprak DN, Buddhadev HH, Brilla L, San Juan JG. Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study. J Int Soc Sports Nutr. 2019;16(1):24. https://doi.org/10.1186/s12970-019-0291-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys. 1999;361(1):75–84. https://doi.org/10.1006/abbi.1998.0959.
Article
CAS
PubMed
Google Scholar
Park CH, Kwak YS, Seo HK, Kim HY. Assessing the values of blueberries intake on exercise performance, TAS, and inflammatory factors. Iran J Public Health. 2018;47(Suppl 1):27–32.
PubMed
PubMed Central
Google Scholar
Klimis-Zacas D, Kristo AS. Wild blueberries (Vaccinium angustifolium): modulators of vascular function, structure, and metabolism. In: Emerging Trends in Dietary Components for Preventing and Combating Disease. American Chemical Society; 2012. p. 151–66. https://doi.org/10.1021/bk-2012-1093.ch009.
Chapter
Google Scholar
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594(18):5135–47. https://doi.org/10.1113/JP270654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19(1):101–6. https://doi.org/10.1038/nm.3019.
Article
CAS
PubMed
Google Scholar
Levers K, Dalton R, Galvan E, Goodenough C, O’Connor A, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J Int Soc Sports Nutr. 2015;12(1):41. https://doi.org/10.1186/s12970-015-0102-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lafay S, Jan C, Nardon K, Lemaire B, Ibarra A, Roller M, et al. Grape extract improves antioxidant status and physical performance in elite male athletes. J Sports Sci Med. 2009;8(3):468–80.
PubMed
PubMed Central
Google Scholar
McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, et al. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(Pt 1):279–88. https://doi.org/10.1113/jphysiol.2006.115352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shafat A, Butler P, Jensen RL, Donnelly AE. Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans. Eur J Appl Physiol. 2004;93(1-2):196–202. https://doi.org/10.1007/s00421-004-1198-y.
Article
CAS
PubMed
Google Scholar
Syrotuik DG, Bell GJ. Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res. 2004;18(3):610–7. https://doi.org/10.1519/12392.1.
Article
PubMed
Google Scholar
Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Phys. 1994;266(5 Pt 1):E725–30.
CAS
Google Scholar
Ferreira ML, Herbert RD, Ferreira PH, Latimer J, Ostelo RW, Nascimento DP, et al. A critical review of methods used to determine the smallest worthwhile effect of interventions for low back pain. J Clin Epidemiol. 2012;65(3):253–61. https://doi.org/10.1016/j.jclinepi.2011.06.018.
Article
PubMed
Google Scholar
Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO. The effects of Shilajit supplementation on fatigue-induced decreases in muscular strength and serum hydroxyproline levels. J Int Soc Sports Nutr. 2019;16(1):3. https://doi.org/10.1186/s12970-019-0270-2.
Article
PubMed
PubMed Central
Google Scholar
U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; 2015. p. 144.
Google Scholar
Program I of M (US) C on DRA in the W. Food-Based Assessment of Dietary Intake. National Academies Press (US); 2002. http://www.ncbi.nlm.nih.gov/books/NBK220560/. Accessed 30 Sep 2019.
Google Scholar
American College of Sports Medicine, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM's guidelines fo exercise testing and prescription. Tenth Edition. Philadelphia (PA): Wolters Kluwer; 2018.