Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. https://doi.org/10.1038/s41580-020-00313-x.
Article
CAS
PubMed
Google Scholar
Yoshino J, Baur JA, Imai S. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28. https://doi.org/10.1016/j.cmet.2017.11.002.
Article
CAS
PubMed
Google Scholar
Clement J, Wong M, Poljak A, Sachdev P, Brady N. The plasma NAD+ metabolome is dysregulated in “normal” aging. Rejuvenation Res. 2019;22(2):121–30. https://doi.org/10.1089/rej.2018.2077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Custodero C, Saini SK, Shin MJ, Jeon YK, Christou DD, McDermott MM, et al. Nicotinamide riboside—a missing piece in the puzzle of exercise therapy for older adults? Exp Gerontol. 2020;137:110972. https://doi.org/10.1016/j.exger.2020.110972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7(1):12948. https://doi.org/10.1038/ncomms12948.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol. 2020;8:246. https://doi.org/10.3389/fcell.2020.00246.
Article
PubMed
PubMed Central
Google Scholar
Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://doi.org/10.1016/j.cmet.2016.09.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10. https://doi.org/10.1016/j.nbd.2016.07.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connell NJ, Houtkooper PH, Schrauwen P. NAD + metabolism as a target for metabolic health: have we found the silver bullet? Diabetologi. 2019;62(6):888–99. https://doi.org/10.1007/s00125-019-4831-3.
Article
CAS
Google Scholar
Kaplon RE, Gano LB, Seals DR. Vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-aged and older adults. J Appl Physiol. 2014;116(2):156–63. https://doi.org/10.1152/japplphysiol.00969.2013.
Article
CAS
PubMed
Google Scholar
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, et al. Niacin cures systemic NAD + deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90. https://doi.org/10.1016/j.cmet.2020.04.008.
Article
CAS
PubMed
Google Scholar
Ringseis R, Gessner DK, Beer AM, Albrecht Y, Wen G, Most E, et al. Nicotinic acid improves endurance performance of mice subjected to treadmill exercise. Metabolites. 2020;10(4):138. https://doi.org/10.3390/metabo10040138.
Article
CAS
PubMed Central
Google Scholar
Ratajczak J, Joffffraud M, Trammell SA, Ras R, Canela N, Boutant M, et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun. 2016;7(1):13103. https://doi.org/10.1038/ncomms13103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin AS, Abraham DM, Hershberger KA, Bhatt DP, Mao L, Cui H, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight. 2017;2(14):e93885.
Article
PubMed Central
Google Scholar
Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–148. https://doi.org/10.1007/s40279-015-0365-0.
Article
PubMed
Google Scholar
Pinckard K, Baskin KK, Stanford KI. Effects of exercise to improve cardiovascular health. Front Cardiovasc Med. 2019;6:69. https://doi.org/10.3389/fcvm.2019.00069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, et al. Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74–89. https://doi.org/10.1016/j.cell.2018.02.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://doi.org/10.1126/science.aaf2693.
Article
CAS
PubMed
Google Scholar
de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep. 2019;7(12):e14139. https://doi.org/10.14814/phy2.14139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamb DA, Moore JH, Mesquita PHC, Smith MA, Vann CG, Osburn SC, et al. Resistance training increases muscle NAD + and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY). 2020;12(10):9447–60. https://doi.org/10.18632/aging.103218.
Article
CAS
Google Scholar
Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, et al. Skeletal muscle NAMPT is induced by exercise in humans. Am J Phys Endocrinol Metab. 2010;298(1):E117–26. https://doi.org/10.1152/ajpendo.00318.2009.
Article
CAS
Google Scholar
Uddin GM, Youngson NA, Doyle BM, Sinclair DA, Morris MJ. Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci Rep. 2017;7(1):15063. https://doi.org/10.1038/s41598-017-14866-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brouwers B, Stephens NA, Costford SR, Hopf ME, Ayala JE, Yi F, et al. Elevated nicotinamide phosphoribosyl transferase in skeletal muscle augments exercise performance and mitochondrial respiratory capacity following exercise training. Front Physiol. 2018;9:704. https://doi.org/10.3389/fphys.2018.00704.
Article
PubMed
PubMed Central
Google Scholar
Pirinen E, Canto C, Jo YS, Morato L, Zhang H, Menzies KJ, et al. Pharmacological inhibition of poly (ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 2014;19(6):1034–41. https://doi.org/10.1016/j.cmet.2014.04.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarrago MG, Chini CCS, Kanamori KS, Warner GM, Caride A, de Oliveira GC, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell Metab. 2018;27(5):1081–95. https://doi.org/10.1016/j.cmet.2018.03.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costford SR, Brouwers B, Hopf ME, Sparks LM, Dispagna M, Gomes AP, et al. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Mol Metab. 2018;7:1–11. https://doi.org/10.1016/j.molmet.2017.10.012.
Article
CAS
PubMed
Google Scholar
Crisol BM, Veiga CB, Braga RR, Lenhare L, Baptista IL, Gaspar RC, et al. NAD(+) precursor increases aerobic performance in mice. Eur J Nutr. 2020;59(6):2427–37. https://doi.org/10.1007/s00394-019-02089-z.
Article
CAS
PubMed
Google Scholar
Kourtzidis IA, Dolopikou CF, Tsiftsis AN, Margaritelis NV, Theodorou AA, Zervos IA, et al. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: implications for exercise performance. Exp Physiol. 2018;103(10):1357–66. https://doi.org/10.1113/EP086964.
Article
CAS
PubMed
Google Scholar
Nichols S, Taylor C, Ingle L. A clinician’s guide to cardiopulmonary exercise testing 2: test interpretation. Br J Hosp Med. 2015;76(5):281–9. https://doi.org/10.12968/hmed.2015.76.5.281.
Article
Google Scholar
Cerezuela-Espejo V, Courel-Ibáñez J, Morán-Navarro R, Martínez-Cava A, Pallarés JG. The relationship between lactate and Ventilatory thresholds in runners: validity and reliability of exercise test performance parameters. Front Physiol. 2018;9:1320. https://doi.org/10.3389/fphys.2018.01320.
Article
PubMed
PubMed Central
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Erlbaum Associates; 1988.
Google Scholar
Irie J, Inagaki E, Fujita M, Nakaya H, Mitsuishi M, Yamaguchi S, et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr.J. 2020;67(2):153–60. https://doi.org/10.1507/endocrj.EJ19-0313.
Article
CAS
PubMed
Google Scholar
Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47. https://doi.org/10.1016/j.cmet.2012.04.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remie CME, Roumans KHM, Moonen MPB, Connell NJ, Havekes B, Mevenkamp J, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://doi.org/10.1093/ajcn/nqaa072.
Article
PubMed
PubMed Central
Google Scholar
Hackney AC. Molecular and physiological adaptations to endurance training. In: Schumann M, Rønnestad B, editors. Concurrent aerobic and strength training. Cham: Springer; 2019. p. 19–34. https://doi.org/10.1007/978-3-319-75547-2_3.
Chapter
Google Scholar
Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, et al. NAD (+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–9. https://doi.org/10.1016/j.cmet.2014.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–38. https://doi.org/10.1016/j.cell.2013.11.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://doi.org/10.1111/acel.12461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duscha BD, Kraus WE, Jones WS, Robbins JS, Piner LW, Huffman KF, et al. Skeletal muscle capillary density is related to anaerobic threshold and claudication in peripheral artery disease.Vascular Med. 2020;1358863X20945794.doi: https://doi.org/10.1177/1358863X20945794
Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256–73. https://doi.org/10.1161/CIRCULATIONAHA.116.026099.
Article
CAS
PubMed
Google Scholar
Ryu D, Zhang H, Ropelle ER, Sorrentino V, Mazala DA, Mouchiroud L, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016;8:361ra139.
Article
PubMed
PubMed Central
Google Scholar
Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, et al. NAD(+) repletion rescues female fertility during reproductive aging. Cell Rep. 2020;30(6):1670–81. https://doi.org/10.1016/j.celrep.2020.01.058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dollerup OL, Chubanava S, Agerholm M, Sondergard SD, Altintas A, Moller AB, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://doi.org/10.1113/JP278752.
Article
CAS
PubMed
Google Scholar
Di Stefano M, Nascimento-Ferreira I, Orsomando G, Mori V, Gilley J, Brown R, et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 2015;22(5):731–42. https://doi.org/10.1038/cdd.2014.164.
Article
CAS
PubMed
Google Scholar
Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28(1):115–30. https://doi.org/10.1146/annurev.nutr.28.061807.155443.
Article
CAS
PubMed
Google Scholar
Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://doi.org/10.1038/s41467-018-03421-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elhassan YS, Kluckova K, Fletcher RS, Schmidt M, Garten A, Doig C, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28. https://doi.org/10.1016/j.celrep.2019.07.043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fletcher RS, Lavery GG. The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. J Mol Endocrinol. 2018;61(3):R107–21. https://doi.org/10.1530/JME-18-0085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running: lessons from triathletes. Sports Med. 2009;39(3):179–206. https://doi.org/10.2165/00007256-200939030-00002.
Article
PubMed
Google Scholar