Rawson ES, Miles MP, Larson-Meyer DE. Dietary supplements for health, adaptation, and recovery in athletes. Int J Sport Nutr Exerc Metab. 2018; 28(2):188–99. https://journals.humankinetics.com/doi/abs/10.1123/ijsnem.2017-0340.
Article
CAS
PubMed
Google Scholar
Jeromson S, Gallagher IJ, Galloway SDR, Hamilton DL. Omega-3 fatty acids and skeletal muscle health. Marine Drugs. 2015; 13(11):6977–7004. https://www.mdpi.com/1660-3397/13/11/6977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhodes LE, Gledhill K, Masoodi M, Haylett AK, Brownrigg M, Thody AJ, Tobin DJ, Nicolaou A. The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. FASEB J. 2009; 23(11):3947–56. https://www.fasebj.org/doi/abs/10.1096/fj.09-136077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilkington SM, Rhodes LE, Al-Aasswad NMI, Massey KA, Nicolaou A. Impact of EPA ingestion on COX-and-LOX mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge–Report of a randomised controlled study in humans. Mol Nutr Food Res. 2014; 58(3):580–90. https://onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201300405.
Article
CAS
PubMed
Google Scholar
Magee P, Pearson S, Whittingham-Dowd J, Allen J. PPAR γ as a molecular target of EPA anti-inflammatory activity during TNF- α-impaired skeletal muscle cell differentiation. J Nutr Biochem. 2012; 23(11):1440–8. http://www.sciencedirect.com/science/article/pii/S0955286311002725.
Article
CAS
PubMed
Google Scholar
Kubota H, Matsumoto H, Higashida M, Murakami H, Nakashima H, Oka Y, Okumura H, Yamamura M, Nakamura M, Hirai T. Eicosapentaenoic acid modifies cytokine activity and inhibits cell proliferation in an oesophageal cancer cell line. Anticancer Res. 2013; 33(10):4319–24. http://ar.iiarjournals.org/content/33/10/4319.
CAS
PubMed
Google Scholar
Black KE, Witard OC, Baker D, Healey P, Lewis V, Tavares F, Christensen S, Pease T, Smith B. Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional rugby union players. Eur J Sport Sci. 2018; 18(10):1357–67. https://doi.org/10.1080/17461391.2018.1491626.
Article
PubMed
Google Scholar
Tinsley GM, Gann JJ, Huber SR, Andre TL, Bounty PML, Bowden RG, Gordon PM, Grandjean PW. Effects of fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl. 2017; 14(1):89–100. https://doi.org/10.1080/19390211.2016.1205701.
Article
CAS
PubMed
Google Scholar
Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP. Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med. 2016; 15(1):176–83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763838/.
PubMed
PubMed Central
Google Scholar
Tsuchiya Y, Yanagimoto K, Nakazato K, Hayamizu K, Ochi E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: A randomized, double-blind, placebo-controlled, parallel-group trial. Eur J Appl Physiol. 2016; 116(6):1179–88. https://doi.org/10.1007/s00421-016-3373-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M. The effects PCSO-524, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: A randomized, placebo controlled trial. J Int Soc Sports Nutr. 2015; 12(1):10. https://doi.org/10.1186/s12970-015-0073-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lembke P, Capodice J, Hebert K, Swenson T. Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med. 2014; 13(1):151. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918552/.
PubMed
PubMed Central
Google Scholar
Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med. 2011; 10(3):432–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737804/.
PubMed
PubMed Central
Google Scholar
Philpott JD, Witard OC, Galloway SDR. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med. 2019; 27(2):219–37. https://doi.org/10.1080/15438627.2018.1550401.
Article
PubMed
Google Scholar
Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjorkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, et al. Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res. 2010; 51(8):2090–104. http://www.jlr.org/content/early/2010/04/02/jlr.M003319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio-Arias JÁ, Ávila-Gandía V, López-Román FJ, Soto-Mndez F, Alcaraz PE, Ramos-Campo DJ. Muscle damage and inflammation biomarkers after two ultra-endurance mountain races of different distances: 54 km vs 111 km. Physiol Behav. 2019; 205:51–7. http://www.sciencedirect.com/science/article/pii/S0031938418308497.
Article
CAS
PubMed
Google Scholar
Gammone MA, Riccioni G, Parrinello G, DOrazio N. Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients. 2019; 11(1):46. https://www.mdpi.com/2072-6643/11/1/46.
Article
CAS
Google Scholar
Peoples GE, McLennan PL, Howe PRC, Groeller H. Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol. 2008; 52(6):540–7. https://journals.lww.com/cardiovascularpharm/Fulltext/2008/12000/Fish_Oil_Reduces_Heart_Rate_and_Oxygen_Consumption.10.aspx.
Article
CAS
PubMed
Google Scholar
Macartney MJ, Hingley L, Brown MA, Peoples GE, McLennan PL. Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr. 2014; 112(12):1984–92. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/intrinsic-heart-rate-recovery-after-dynamic-exercise-is-improved-with-an-increased-omega3-index-in-healthy-males/D516E3D4310FA476EA8F2EF28239DDAE.
Article
CAS
PubMed
Google Scholar
Buckley JD, Burgess S, Murphy KJ, Howe PRC. DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian Rules footballers. J Sci Med Sport. 2009; 12(4):503–7. http://www.sciencedirect.com/science/article/pii/S1440244008000340.
Article
PubMed
Google Scholar
Ochi E. Eicosapentaenoic Acid and Docosahexanoic Acid in Exercise Performance In: Bagchi D, Nair S, Sen CK, editors. Nutrition and Enhanced Sports Performance. Second Edition. London: Academic Press. p. 715–28. http://www.sciencedirect.com/science/article/pii/B978012813922600062X.
Casanova E, Baselga-Escudero L, Ribas-Latre A, Arola-Arnal A, Blad C, Arola L, Salvadó MJ. Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat. BioFactors. 2014; 40(1):146–56. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1129.
Article
CAS
PubMed
Google Scholar
Horakova O, Medrikova D, van Schothorst EM, Bunschoten A, Flachs P, Kus V, Kuda O, Bardova K, Janovska P, Hensler M, et al. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PloS ONE. 2012; 7(8):43764. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043764.
Article
CAS
Google Scholar
Da Boit M, Hunter AM, Gray SR. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance. Metabolism. 2017; 66:45–54. http://www.sciencedirect.com/science/article/pii/S0026049516301421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC. Eicosapentaenoic acid (20: 5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. J Lipid Res. 2006; 47(2):366–74. http://www.jlr.org/content/47/2/366.
Article
CAS
PubMed
Google Scholar
Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of β-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid. Diabetes. 2009; 58(3):527–35. http://diabetes.diabetesjournals.org/content/58/3/527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis. 2012; 11(1):142. https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-11-142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gammone MA, Gemello E, Riccioni G, D’Orazio N. Marine bioactives and potential application in sports. Marine Drugs. 2014; 12(5):2357–82. https://www.mdpi.com/1660-3397/12/5/2357.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeFilippis AP, Sperling LS. Understanding omega-3’s. Am Heart J. 2006; 151(3):564–70. http://www.sciencedirect.com/science/article/pii/S0002870305003510.
Article
CAS
PubMed
Google Scholar
Figueroa F, Marhuenda J, Girons-Vilaplana A, Villao D, Villao A, Mulero J, Cerdá B, Zafrilla P. Soil and climate determine antioxidant capacity of walnuts. Emirates J Food Agric. 2017:557–61. http://www.ejfa.me/index.php/journal/article/view/1228.
Figueroa F, Marhuenda J, Zafrilla P, Villao D, Martnez-Cach A, Tejada L, Cerdá B, Mulero J. High-performance liquid chromatography-diode array detector determination and availability of phenolic compounds in 10 genotypes of walnuts. Int J Food Prop. 2017; 20(5):1074–84. https://doi.org/10.1080/10942912.2016.1199036.
Article
CAS
Google Scholar
Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep. 2016; 6:21892. https://www.nature.com/articles/srep21892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lerfall J, Bendiksen E, Olsen JV, Østerlie M. A comparative study of organic-versus conventional Atlantic salmon. II. Fillet color, carotenoid-and fatty acid composition as affected by dry salting, cold smoking and storage. Aquaculture. 2016; 451:369–76. http://www.sciencedirect.com/science/article/pii/S0044848615301940.
Article
CAS
Google Scholar
Brenna JT, Salem N, Sinclair AJ, Cunnane SC. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fat Acids. 2009; 80(2):85–91. http://www.sciencedirect.com/science/article/pii/S0952327809000167.
Article
CAS
Google Scholar
Clark KJ, Makrides M, Neumann MA, Gibson RA. Determination of the optimal ratio of linoleic acid to α-linolenic acid in infant formulas. J Pediatr. 1992; 120:151–8. http://www.sciencedirect.com/science/article/pii/S0022347605812508.
Article
Google Scholar
Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories. 2012; 11(1):96. https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-11-96.
Article
CAS
Google Scholar
Dembitsky VM, Pechenkina-Shubina EE, Rozentsvet OA. Glycolipids and fatty acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry. 1991; 30(7):2279–83. http://www.sciencedirect.com/science/article/pii/0031942291836304.
Article
CAS
Google Scholar
Bocanegra A, Bastida S, Bened J, Rdenas S, Sanchez-Muniz FJ. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food. 2009; 12(2):236–58. https://www.liebertpub.com/doi/abs/10.1089/jmf.2008.0151.
Article
CAS
PubMed
Google Scholar
Gorjo R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol Ther. 2009; 122(1):56–64. http://www.sciencedirect.com/science/article/pii/S016372580900014X.
Article
CAS
Google Scholar
Cottin SC, Sanders TA, Hall WL. The differential effects of EPA and DHA on cardiovascular risk factors. Proc Nutr Soc. 2011; 70(2):215–31. https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/differential-effects-of-epa-and-dha-on-cardiovascular-risk-factors/63DCD0AB997CFFA16862B21470853E53.
Article
CAS
PubMed
Google Scholar
Shei RJ, Lindley MR, Mickleborough TD. Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Mil Med. 2014; 179:144–56. https://academic.oup.com/milmed/article/179/suppl_11/144/4210222.
Article
PubMed
Google Scholar
American College of Sports Medicine, et al. Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Med Sci Sports Exerc. 1998; 30(6):1009–18.
Google Scholar
General Assembly of the World Medical Association, et al. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014; 81(3):14.
Google Scholar
Smith-Barbaro P, Darby L, Reddy BS. Reproducibility and accuracy of a food frequency questionnaire used for diet intervention studies. Nutr Res. 1982; 2(3):249–61. http://www.sciencedirect.com/science/article/pii/S0271531782800067.
Article
Google Scholar
Beaton GH, Milner J, Corey P, McGuire V, Cousins M, Stewart E, De Ramos M, Hewitt D, Grambsch PV, Kassim N, et al. Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Am J Clin Nutr. 1979; 32(12):2546–59. https://academic.oup.com/ajcn/article/32/12/2546/4692542.
Article
CAS
PubMed
Google Scholar
Gersovitz M, Madden JP, Smiciklas-Wright H. Validity of the 24-hr. dietary recall and seven-day record for group comparisons. J Am Diet Assoc. 1978; 73(1):48–55. http://europepmc.org/abstract/med/659761.
CAS
PubMed
Google Scholar
Torregrosa-Garca A, vila Ganda V, Luque-Rubia AJ, Abelln-Ruiz MS, Querol-Caldern M, Lopez-Roman FJ. Pomegranate extract improves maximal performance of trained cyclists after an exhausting endurance trial: a randomised controlled trial. Nutrients. 2019; 11(4):721. https://www.mdpi.com/2072-6643/11/4/721.
Article
CAS
Google Scholar
Weston SB, Gabbett TJ. Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport. 2001; 4(3):357–66. http://www.sciencedirect.com/science/article/pii/S144024400180044X.
Article
CAS
PubMed
Google Scholar
Casajs JA, Piedrafita E, Aragons MT. Criterios de maximalidad en pruebas de esfuerzo. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte/International Journal of Medicine and Science of Physical Activity and Sport. 2009; 9(35):217–31. http://www.redalyc.org/resumen.oa?id=54223022001.
Google Scholar
Skinner JS, Mclellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport. 1980; 51(1):234–48. https://shapeamerica.tandfonline.com/doi/abs/10.1080/02701367.1980.10609285.
Article
CAS
PubMed
Google Scholar
Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986; 60(6):2020–7. https://www.physiology.org/doi/abs/10.1152/jappl.1986.60.6.2020.
Article
CAS
PubMed
Google Scholar
Luca A, Hoyos J, Chicharro JL. The slow component of VO2 in professional cyclists. Br J Sports Med. 2000; 34(5):367–74. https://bjsm.bmj.com/content/34/5/367.
Article
Google Scholar
Hingley L, Macartney MJ, Brown MA, McLennan PL, Peoples GE. DHA-rich fish oil increases the omega-3 index and lowers the oxygen cost of physiologically stressful cycling in trained individuals. Int J Sport Nutr Exerc Metab. 2017; 27(4):335–43. https://journals.humankinetics.com/doi/abs/10.1123/ijsnem.2016-0150.
Article
CAS
PubMed
Google Scholar
Da Boit M, Mastalurova I, Brazaite G, McGovern N, Thompson K, Gray SR. The effect of krill oil supplementation on exercise performance and markers of immune function. Plos ONE. 2015; 10(9):0139174. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=109965609&lang=es&site=eds-live.
Article
CAS
Google Scholar
Kawabata F, Neya M, Hamazaki K, Watanabe Y, Kobayashi S, Tsuji T. Supplementation with eicosapentaenoic acid-rich fish oil improves exercise economy and reduces perceived exertion during submaximal steady-state exercise in normal healthy untrained men. Biosci Biotechnol Biochem. 2014; 78(12):2081–8. https://doi.org/10.1080/09168451.2014.946392.
Article
CAS
PubMed
Google Scholar
Gray P, Gabriel B, Thies F, Gray SR. Fish oil supplementation augments post-exercise immune function in young males. Brain Behav Immun. 2012; 26(8):1265–72. http://www.sciencedirect.com/science/article/pii/S0889159112003893.
Article
CAS
PubMed
Google Scholar
Patten GS, Abeywardena MY, McMurchie EJ, Jahangiri A. Dietary fish oil increases acetylcholine-and eicosanoid-induced contractility of isolated rat ileum. J Nutr. 2002; 132(9):2506–13. https://academic.oup.com/jn/article/132/9/2506/4687819.
Article
CAS
PubMed
Google Scholar
Lewis EJH, Radonic PW, Wolever TMS, Wells GD. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr. 2015; 12(1):28. https://jissn.biomedcentral.com/articles/10.1186/s12970-015-0089-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guzman JF, Esteve H, Pablos C, Pablos A, Blasco C, Villegas JA. DHA-rich fish oil improves complex reaction time in female elite soccer players. J Sports Sci Med. 2011; 10(2):301. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761870/.
PubMed
PubMed Central
Google Scholar
Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil–derived n- 3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015; 102(1):115–22. https://academic.oup.com/ajcn/article/102/1/115/4564326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mancera P, Wappenhans B, Cordobilla B, Virgili N, Pugliese M, Rueda F, Espinosa-Parrilla JF, Domingo JC. Natural docosahexaenoic acid in the triglyceride form attenuates in vitro microglial activation and ameliorates autoimmune encephalomyelitis in mice. Nutrients. 2017; 9(7). http://www.mdpi.com/2072-6643/9/7/681.
Dyerberg J, Madsen P, Mller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fat Acids. 2010; 83(3):137–41. http://www.sciencedirect.com/science/article/pii/S0952327810001171.
Article
CAS
Google Scholar
Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids. 2013; 89(1):1–8. http://www.sciencedirect.com/science/article/pii/S0952327813000719.
Article
CAS
Google Scholar
Neubronner J, Schuchardt JP, Kressel G, Merkel M, von Schacky C, Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr. 2011; 65(2):247–54. https://www.nature.com/articles/ejcn2010239.
Article
CAS
PubMed
Google Scholar
Bandarra NM, Lopes PA, Martins SV, Ferreira J, Alfaia CM, Rolo EA, Correia JJ, Pinto RMA, Ramos-Bueno RP, Batista I, et al. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters. Nutr Res. 2016; 36(5):452–63.
Article
CAS
PubMed
Google Scholar
Ghasemifard S, Turchini GM, Sinclair AJ. Omega-3 long chain fatty acid “bioavailability”: A review of evidence and methodological considerations. Prog Lipid Res. 2014; 56:92–108. http://www.sciencedirect.com/science/article/pii/S0163782714000435.
Article
CAS
PubMed
Google Scholar
Gasso F, Bogdanov P, Domingo J. Docosahexaenoic acid improves endogen antioxidant defense in ARPE-19 cells. ARVO. 2008; 49(13):5932. https://iovs.arvojournals.org/article.aspx?articleid=2381313.
Google Scholar
Gomez-Soler M, Cordobilla B, Morat X, Fernandez-Dueas V, Domingo JC, Ciruela F. Triglyceride form of docosahexaenoic acid mediates neuroprotection in experimental parkinsonism. Front Neurosci. 2018; 12:604. https://www.frontiersin.org/articles/10.3389/fnins.2018.00604/full.
Article
PubMed
PubMed Central
Google Scholar
Domingo P, Gallego-Escuredo JM, Fernndez I, Villarroya J, Torres F, del Mar Gutierrez M, Mateo MG, Villarroya F, Vidal F, Giralt M, et al. Effects of docosahexanoic acid supplementation on inflammatory and subcutaneous adipose tissue gene expression in HIV-infected patients on combination antiretroviral therapy (cART). A sub-study of a randomized, double-blind, placebo-controlled study. Cytokine. 2018; 105:73–9. https://linkinghub.elsevier.com/retrieve/pii/S1043466618300486.
Article
CAS
PubMed
Google Scholar
Use of DHA, EPA or DHA-derived EPA for treating a pathology associated with cellular oxidative damage. 2016:0151320A1. https://patents.google.com/patent/US20160151320A1.
Huffman DM, Altena TS, Mawhinney TP, Thomas TR. Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur J Appl Physiol. 2004; 92(4-5):584–91. https://link.springer.com/article/10.1007/s00421-004-1069-6.
Article
CAS
PubMed
Google Scholar
Zebrowska A, Mizia-Stec K, Mizia M, Gasior Z, Poprzecki S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur J Sport Sci. 2015; 15(4):305–14. https://doi.org/10.1080/17461391.2014.949310.
Article
PubMed
Google Scholar
Luca A, Hoyos J, Prez M, Chicharro J. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000; 32(10):1777. insights.ovid.com.
Article
Google Scholar
Owen AJ, Peter-Przyborowska BA, Hoy AJ, McLennan PL. Dietary fish oil dose-and time-response effects on cardiac phospholipid fatty acid composition. Lipids. 2004; 39(10):955. https://aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11745-004-1317-0.
Article
CAS
PubMed
Google Scholar
McLennan PL, Bridle TM, Abeywardena MY, Charnock JS. Dietary lipid modulation of ventricular fibrillation threshold in the marmoset monkey. Am Heart J. 1992; 123(6):1555–61. http://www.sciencedirect.com/science/article/pii/000287039290809A.
Article
CAS
PubMed
Google Scholar
Solomon SA, Cartwright I, Pockley G, Greaves M, Preston FE, Ramsay LE, Waller PC. A placebo-controlled, double-blind study of eicosapentaenoic acid-rich fish oil in patients with stable angina pectoris. Curr Med Res Opin. 1990; 12(1):1–11. https://doi.org/10.1185/03007999009111485.
Article
CAS
PubMed
Google Scholar
Gans ROB, Bilo HJG, Weersink EGL, Rauwerda JA, Fonk T, Popp-Snijders C, Donker AJM. Fish oil supplementation in patients with stable claudication. Am J Surg. 1990; 160(5):490–5. https://www.americanjournalofsurgery.com/article/S00029610{05}81012-8/abstract.
Article
CAS
PubMed
Google Scholar
Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation. 2002; 105(19):2303–8. https://www.ahajournals.org/doi/full/10.1161/01.CIR.0000015604.88808.74.
Article
CAS
PubMed
Google Scholar
Metcalf RG, James MJ, Gibson RA, Edwards JR, Stubberfield J, Stuklis R, Roberts-Thomson K, Young GD, Cleland LG. Effects of fish-oil supplementation on myocardial fatty acids in humans. 2007; 85(5):1222–8. https://academic.oup.com/ajcn/article/85/5/1222/4633062.
Christensen JH, Christensen MS, Dyerberg J, Schmidt EB. Heart rate variability and fatty acid content of blood cell membranes: a dose-response study with n- 3 fatty acids. Am J Clin Nutr. 1999; 70(3):331–7. https://academic.oup.com/ajcn/article/70/3/331/4714834.
Article
CAS
PubMed
Google Scholar
Vacek JL, Harris WS, Haffey K. Short-term effects of omega-3 fatty acids on exercise stress test parameters, angina and lipoproteins. Biomed Pharmacother. 1989; 43(5):375–9. http://www.sciencedirect.com/science/article/pii/0753332289900644.
Article
CAS
PubMed
Google Scholar
OKeefe JH, Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006; 97(8):1127–30. http://www.sciencedirect.com/science/article/pii/S0002914906000294.
Article
CAS
Google Scholar