Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28:104–25.
Article
CAS
PubMed
Google Scholar
Kristiansen M, Levy-Milne R, Barr S, Flint A. Dietary supplement use by varsity athletes at a Canadian University. Int J Sport Nutr Exerc Metab. 2005;15(2):195–210.
Article
CAS
PubMed
Google Scholar
Petroczi A, Naughton DP. The age-gender-status profile of high performing athletes in the UK taking nutritional supplements: lessons for the future. J Int Soc Sport Nutr. 2008;5:2.
Article
CAS
Google Scholar
López-Samanes Á, Moreno-Pérez V, Kovacs MS, Pallarés JG, Mora-Rodríguez R, Ortega Fonseca JF. Use of nutritional supplements and ergogenic aids in professional tennis players. Nutr Hosp. 2017;34:1463–8.
PubMed
Google Scholar
López-Domínguez R, Sánchez-Oliver AJ. Use of sports nutritional supplements in elite rowers: difference between national and international. RETOS – Nuevas Tendencias en Educ. Fis. Deport. y Recreacion [Internet]. 2018 [cited 2019 Aug 27];34:272–5. Available from: https://recyt.fecyt.es/index.php/retos/article/view/65026/39534.
Sánchez-Oliver A, Miranda-León M, Guerra-Hernández E. Estudio estadístico del consumo de suplementos nutricionales y dietéticos en gimnasios. Arch Latinoam Nutr [Internet]. 2008 [cited 2017 Mar 1];58:221–7.
Tsitsimpikou C, Chrisostomou N, Papalexis P, Tsarouhas K, Tsatsakis A, Jamurtas A. The use of nutritional supplements among recreational athletes in Athens, Greece. Int J Sport Nutr Exerc Metab [Internet]. 2011 [cited 2019 July 12];21:377–84.
Article
PubMed
Google Scholar
Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-álvarez M, Plata MDM, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11(2):286.
Article
CAS
PubMed Central
Google Scholar
Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Muller CE. Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther U S A. 2004;308:358–66.
Article
CAS
Google Scholar
Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sport Med. 2009;39(10):813–32.
Article
CAS
Google Scholar
Meeusen R. Exercise, nutrition and the brain. Sport Med. 2014;44(1):S47–56.
Article
Google Scholar
Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol [Internet]. 2003;284:R399–404.
Article
CAS
PubMed
Google Scholar
Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–29.
Article
CAS
PubMed
Google Scholar
Kalmar JM, Cafarelli E. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. J Appl Physiol. 2006;100(6):1757–64.
Article
CAS
PubMed
Google Scholar
Plaskett CJ, Cafarelli E. Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J Appl Physiol. 2001;91(4):1535–44.
Article
CAS
PubMed
Google Scholar
Rousseau E, Ladine J, Liu QY, Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988;267(1):75–86.
Article
CAS
PubMed
Google Scholar
Allen DG, Westerblad H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol. 1995;487(2):31–342.
Article
Google Scholar
Glaister M, Gissane C. Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sport Physiol Perform. 2018;13(4):402–11.
Article
Google Scholar
Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18(2):219–25.
Article
PubMed
Google Scholar
Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sport Nutr. 2018;15:11.
Article
Google Scholar
Lopez-Samanes A, Ortega Fonseca JF, Fernandez Elias VE, Borreani S, Mate-Munõz JL, Kovacs MS. Nutritional ergogenic aids in Tennis: a brief review. Strength Cond J. 2015;37(3):1–11.
Article
Google Scholar
López-González LM, Sánchez-Oliver AJ, Mata F, Jodra P, Antonio J, Domínguez R. Acute caffeine supplementation in combat sports: a systematic review. J Int Soc Sport Nutr. 2018;15(1):60.
Article
CAS
Google Scholar
Salinero JJ, Lara B, Del Coso J. Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sport Med. 2019;27(2):238–56.
Article
Google Scholar
Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25:178–85.
Article
PubMed
Google Scholar
Sökmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, et al. Caffeine use in sports: considerations for the athlete. J Strength Cond Res. 2008;22(3):978–86.
Article
PubMed
Google Scholar
Ali A, O’Donnell J, Von Hurst P, Foskett A, Holland S, Starck C, et al. Caffeine ingestion enhances perceptual responses during intermittent exercise in female team-game players. J Sports Sci. 2016;34:330–41.
Article
PubMed
Google Scholar
Smith A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002;40(9):1243–55.
Article
CAS
PubMed
Google Scholar
Hanin YL. A study of anxiety in sports. In: William FS, editor. Sport psychology: An analysis of athletic behavior. Ithaca: Mouvement Publications; 1978. p. 236–49.
Google Scholar
Hanin YL. Emotions and athletic performance: individual zones of optimal functioning model. Essential readings in sport and exercise psychology. Human Kinetics: Champaign; 2007.
Google Scholar
Nehlig A. Is caffeine a cognitive enhancer? Cunha RA, de Mendonça A, editors. J Alzheimer’s Dis [Internet]. 2010 [cited 2019 Jan 17];20:S85–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20182035.
Kumar N, Warren GL, Snow TK, Millard-Stafford M. Caffeine ingestion with or without low-dose carbohydrate improves exercise tolerance in sedentary adults. Front Nutr. 2019;6:9.
Article
PubMed
PubMed Central
Google Scholar
Skinner TL, Jenkins DG, Leveritt MD, McGorm A, Bolam KA, Coombes JS, et al. Factors influencing serum caffeine concentrations following caffeine ingestion. J Sci Med Sport. 2014;17(5):516–20.
Article
PubMed
Google Scholar
Collomp K, Ahmaidi S, Chatard JC, Audran M, Préfaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64:377–80.
Article
CAS
PubMed
Google Scholar
Boyett JC, Giersch GEW, Womack CJ, Saunders MJ, Hughey CA, Daley HM, et al. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients. 2016;8(10):639.
Article
CAS
PubMed Central
Google Scholar
Goods PSR, Landers G, Fulton S. Caffeine ingestion improves repeated freestyle sprints in elite male swimmers. J Sport Sci Med. 2017;16(1):93–8.
Google Scholar
Jacobson BH, Weber MD, Claypool L, Hunt LE. Effect of caffeine on maximal strength and power in élite male athletes. Br J Sports Med. 1992;26(4):276–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients. 2016;8(7):393.
Article
PubMed Central
CAS
Google Scholar
Potach D. Entrenamiento pliométrico y de velocidad. In: Earle R, Baechle T, editors. Man. NSCA Fundam. del Entren. Pers. Barcelona, Spain: Paidotribo; 2002. p. 515–54.
Bar-Or O. The Wingate anaerobic test an update on methodology, reliability and validity. Sport Med An Int J Appl Med Sci Sport Exerc. 1987;4(6):381–94.
CAS
Google Scholar
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.
Article
CAS
PubMed
Google Scholar
Ministerio de Sanidad y Consumo. Real Farmacopea Española. Madrid; 2005.
Domínguez R, Garnacho-Castaño MV, Cuenca E, García-Fernández P, Muñoz-González A, de Jesús F, et al. Effects of beetroot juice supplementation on a 30-s high-intensity inertial cycle ergometer test. Nutrients. 2017;9(12):1360.
Article
PubMed Central
CAS
Google Scholar
McNair DM, Lorr M, Droppleman LF. Manual for profile of mood states. San Diego: Educational and Industrial Testing Service; 1992.
Fuentes I, Balaguer I, Meliá JL, García-Merita M. Forma abreviada del Perfil de Estado de Ánimo (POMS). V Congr. Nac. Psicol. la Act. Física y el Deport. 1995.
Ryan RM, Frederick C. On energy, personality, and Health: subjective vitality as a dynamic reflection of well-being. J Pers. 1997;65(3):529–65.
Article
CAS
PubMed
Google Scholar
Balaguer I, Castillo I, García-Mertia M, Mars I. Implications of structured extracurricular activities on adolescent’s well being and risk behaviors: motivational mechanisms. 9th European Congress of Psychology. 2005.
Cuenca E, Jodra P, Pérez-López A, González-Rodríguez LG, da Silva SF, Veiga-Herreros P, et al. Effects of beetroot juice supplementation on performance and fatigue in a 30-s all-out sprint exercise: a randomized, double-blind cross-over study. Nutrients. 2018;10(9):1222.
Article
PubMed Central
CAS
Google Scholar
Jodra P, Dominguez R, Sanchez-Oliver A, Veiga-Herreros P, Bailey SJ. Effect of beetroot juice supplementation on mood, perceived exercise and performance during a 30 s Wingate test. Int J Sport Physiol Perform. 2019:1–6.
Medicine GB. Subjective effort and physical abilities. Scand J Rehabil [Internet]. 1978 [cited 2019 Jan 17];6:197. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Borg%2C+G.+%281978%29.+Subjective+effort+and+physical+abilities.+Scandinavian+Journal+of+Rehabilitation+Medicine%2C+6%2C+105–113.&btnG=.
Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.
Article
PubMed
PubMed Central
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. Technometrics. 1988;31(4):499–500.
Google Scholar
Ferguson CJ. An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pract. 2009;40(5):532.
Article
Google Scholar
Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6(2):135–47.
Article
Google Scholar
Doherty M, Smith PM, Hughes MG, Davison RCR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004;22(7):637–43.
Article
PubMed
Google Scholar
Wiles JD, Coleman D, Tegerdine M, Swaine IL. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci. 2006;24:1165–71.
Article
PubMed
Google Scholar
Astorino TA, Terzi MN, Roberson DW, Burnett TR. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med Sci Sports Exerc. 2010;42(12):2205–10.
Article
CAS
PubMed
Google Scholar
Boiko Ferreira LH, Smolarek AC, Mascarenhas LPG, Oliveira CS, Zandoná BA, Schoenfeld BJ, et al. Acute effect of different doses of caffeine on strength and calcium release. Med Sci Sports Exerc. 2018;50(5S):599.
Article
Google Scholar
Negaresh R, Del Coso J, Mokhtarzade M, Lima-Silva AE, Baker JS, Willems MET, et al. Effects of different dosages of caffeine administration on wrestling performance during a simulated tournament. Eur J Sport Sci. 2019;19(4):499–507.
Article
PubMed
Google Scholar
García-Pallarés J, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc [Internet]. 2013 [cited 2019 July 12];45:2184–92. Available from: https://insights.ovid.com/crossref?an=00005768-201311000-00021.
Article
CAS
Google Scholar
Jonvik KL, Nyakayiru J, Van Dijk JW, Maase K, Ballak SB, Senden JMG, et al. Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. Eur J Sport Sci. 2018;18(4):524–33.
Article
CAS
PubMed
Google Scholar
Demirkan E, Koz M, Kutlu M, Favre M. Comparison of physical and physiological profiles in elite and amateur young wrestlers. J Strength Cond Res. 2015;29(7):1876–83.
Article
PubMed
Google Scholar
Abidin MAH, Ooi FK, Chen CK. Physiological profiles and bone health status of Malay adolescent male boxing, Muay Thai and silat athletes. Sport Sci Health. 2018;14(3):673–83.
Article
Google Scholar
García Pallarés J, López-Gullón JM, Torres-Bonete MD, Izquierdo M. Physical fitness factors to predict female Olympic wrestling performance and sex differences. J Strength Cond Res. 2012;26(3):794–803.
Article
PubMed
Google Scholar
García-Pallarés J, López-Gullón JM, Muriel X, Díaz A, Izquierdo M. Physical fitness factors to predict male Olympic wrestling performance. Eur J Appl Physiol [Internet]. 2011 [cited 2017 Feb 23];111:1747–58. Available from: http://link.springer.com/10.1007/s00421-010-1809-8.
Article
PubMed
Google Scholar
Graham TE. Caffeine and exercise metabolism, endurance and performance. Sport Med. 2001;31(11):785–807.
Article
CAS
Google Scholar
Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol [Internet]. Springer; 2010 [cited 2019 Jan 17];109:763–70. Available from: http://link.springer.com/10.1007/s00421-010-1418-6.
Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13:392–9.
Article
PubMed
Google Scholar
Stojanovic E, Stojiljkovic N, Scanlan AT, Dalbo VJ, Stankovic R, Antic V, et al. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl Physiol Nutr Metab. 2019;44(8):849–56.
Article
CAS
PubMed
Google Scholar
Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci. 2019;19(1):103–11.
Article
PubMed
Google Scholar
Chtourou H, Trabelsi K, Ammar A, Shephard RJ, Bragazzi NL. Acute effects of an “Energy drink” on short-term maximal performance, reaction times, psychological and physiological parameters: insights from a randomized double-blind, placebo-controlled, counterbalanced crossover trial. Nutrients. 2019;11(5):992.
Article
CAS
PubMed Central
Google Scholar
Souissi M, Abedelmalek S, Chtourou H, Atheymen R, Hakim A, Sahnoun Z. Effects of morning caffeine’ ingestion on mood states, simple reaction time, and short-term maximal performance on elite judoists. Asian J Sports Med. 2012;3:161–8.
Article
PubMed
PubMed Central
Google Scholar
Souissi M, Abedelmalek S, Chtourou H, Boussita A, Hakim A, Sahnoun Z. Effects of time-of-day and caffeine ingestion on mood states, simple reaction time, and short-term maximal performance in elite judoists. Biol Rhythm Res. 2013;44:897–907.
Article
CAS
Google Scholar
Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115–20.
Article
PubMed
Google Scholar
Laurence G, Wallman K, Guelfi K. Effects of caffeine on time trial performance in sedentary men. J Sports Sci. 2012;30(12):1235–40.
Article
PubMed
Google Scholar
Casado A, Moreno-Pérez D, Larrosa M, Renfree A. Different psychophysiological responses to a high-intensity repetition session performed alone or in a group by elite middle-distance runners. Eur J Sport Sci [Internet]. 2019 [cited 2019 Nov 27];19:1045–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30922192.
Article
PubMed
Google Scholar
Killen LG, Green JM, O’Neal EK, McIntosh JR, Hornsby J, Coates TE. Effects of caffeine on session ratings of perceived exertion. Eur J Appl Physiol. 2013;113(3):721–7.
Article
CAS
PubMed
Google Scholar
Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4(6):316–21.
Article
CAS
PubMed
Google Scholar
Lieberman HR. The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy. Nutr Rev. 2009;59(4):91–102.
Article
Google Scholar
Stevens MJ, Lane AM, Terry PC. Mood profiling during Olympic qualifying judo competition: a case study testing transactional relationships. J Sport Sci Med. 2006;5:143–51.
Google Scholar
Souissi M, Aloui A, Chtourou H, Aouicha HB, Atheymen R, Sahnoun Z. Caffeine ingestion does not affect afternoon muscle power and fatigue during the Wingate test in elite judo players. Biol Rhythm Res. 2015;46:291–8 Taylor and Francis Ltd.
Article
CAS
Google Scholar
Lane AM, Jackson A, Terry PC. Preferred modality influences on exercise-induced mood changes. J Sports Sci Med [Internet]. 2005 [cited 2019 Aug 27];4:195–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24431976.
Lane AM, Jarrett H. Mood changes following golf among senior recreational players. J Sports Sci Med [Internet]. Department of Sports Medicine, Medical Faculty of Uludag University; 2005 [cited 2019 Aug 27];4:47–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24431960.
Paton CD, Lowe T, Irvine A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol [Internet]. 2010 [cited 2019 Aug 27];110:1243–50. Available from: http://link.springer.com/10.1007/s00421-010-1620-6.
Article
CAS
PubMed
Google Scholar
Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res [Internet]. 2011 [cited 2017 Feb 23];25:178–85. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00124278-201101000-00026.
Teychenne M, Ball K, Salmon J. Physical activity, sedentary behavior and depression among disadvantaged women. Health Educ Res [Internet]. 2010 [cited 2019 Aug 27];25:632–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20145009.
Article
PubMed
Google Scholar
Brosse AL, Sheets ES, Lett HS, Blumenthal JA. Exercise and the treatment of clinical depression in adults. Sport Med [Internet]. Springer; 2002 [cited 2019 Aug 27];32:741–60. Available from: http://link.springer.com/10.2165/00007256-200232120-00001.
Solomon GS, Kuhn AW, Zuckerman SL. Depression as a modifying factor in sport-related concussion: a critical review of the literature. Phys Sportsmed [Internet]. 2016 [cited 2019 Aug 27];44:14–9. Available from: http://www.tandfonline.com/doi/full/10.1080/00913847.2016.1121091.
Article
PubMed
Google Scholar
Yrondi A, Brauge D, LeMen J, Arbus C, Pariente J. Depression and sports-related concussion: a systematic review. Presse Med [Internet]. 2017 [cited 2019 Aug 27];46:890–902. Available from: https://linkinghub.elsevier.com/retrieve/pii/S075549821730372X.
Article
PubMed
Google Scholar
Moore RD, Sauve W, Ellemberg D. Neurophysiological correlates of persistent psycho-affective alterations in athletes with a history of concussion. Brain Imaging Behav [Internet]. 2016 [cited 2019 Aug 27];10:1108–16. Available from: http://link.springer.com/10.1007/s11682-015-9473-6.
Vargas G, Rabinowitz A, Meyer J, Arnett PA. Predictors and prevalence of postconcussion depression symptoms in collegiate athletes. J Athl Train [Internet]. 2015 [cited 2019 Aug 27];50:250–5. Available from: http://natajournals.org/doi/10.4085/1062-6050-50.3.02.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Peek-Asa C, Covassin T, Torner JC. Post-concussion symptoms of depression and anxiety in division I collegiate athletes. Dev Neuropsychol [Internet]. 2015 [cited 2019 Aug 27];40:18–23. Available from: http://www.tandfonline.com/doi/abs/10.1080/87565641.2014.973499.
Makdissi M, Davis G, McCrory P. Updated guidelines for the management of sports-related concussion in general practice. Aust. Fam. Physician [Internet]. 2014 [cited 2019 Aug 27];43:94–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24600668.
Google Scholar
Guskiewicz K, Marshall S, Bailes J, McCrea M, Harding HJ, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sport Exerc [Internet]. 2007 [cited 2019 Aug 27];39:903–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17545878.
Article
Google Scholar
Decq P, Gault N, Blandeau M, Kerdraon T, Berkal M, ElHelou A, et al. Long-term consequences of recurrent sports concussion. Acta Neurochir. (Wien). [Internet]. 2016 [cited 2019 Aug 27];158:289–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26711286.
Article
PubMed
Google Scholar
McMillan TM, McSkimming P, Wainman-Lefley J, Maclean LM, Hay J, McConnachie A, et al. Long-term health outcomes after exposure to repeated concussion in elite level: rugby union players. J Neurol Neurosurg Psychiatry [Internet]. 2017 [cited 2019 Nov 27];88:505–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27951526.
Kerr ZY, DeFreese JD, Marshall SW. Current physical and mental health of former collegiate athletes. Orthop J Sport Med. 2014:2, 1 Sage.