Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.
Article
PubMed
CAS
Google Scholar
Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011;39(7):1749–59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol. 2018;100:1–19.
Article
CAS
Google Scholar
Meo SD, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. 2017;233(1):R15.
Mollica JP, Dutka TL, Merry TL, Lamboley CR, McConell GK, McKenna MJ, et al. S-Glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans. J Physiol. 2012;590(6):1443–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andrade FH, Reid MB, Westerblad H. Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J. 2001;15(2):309–11.
Article
PubMed
CAS
Google Scholar
Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.
Article
PubMed
CAS
Google Scholar
Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70.
Article
PubMed
PubMed Central
Google Scholar
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594(18):5135–47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laaksonen R, Fogelholm M, Himberg JJ, Laakso J, Salorinne Y. Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):95–100.
Article
PubMed
CAS
Google Scholar
Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(2):160–8.
Article
PubMed
Google Scholar
Malm C, Svensson M, Ekblom B, Sjodin B. Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans. Acta Physiol Scand. 1997;161(3):379–84.
Article
PubMed
CAS
Google Scholar
Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.
Article
PubMed
CAS
Google Scholar
Reid MB. Reactive oxygen species as agents of fatigue. Med Sci Sports Exerc. 2016;48(11):2239–46.
Article
PubMed
CAS
Google Scholar
Medved I, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol. 2004;97(4):1477–85.
Article
PubMed
CAS
Google Scholar
McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, et al. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(Pt 1):279–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Braakhuis AJ, Hopkins WG. Impact of dietary antioxidants on sport performance: a review. Sports Med. 2015;45(7):939–55.
Article
PubMed
Google Scholar
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 2020:101471.
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidant supplementation, redox deficiencies and exercise performance: a falsification design. Free Radic Biol Med. 2020;158:44–52 https://doi.org/10.1016/j.freeradbiomed.2020.06.029.
Article
PubMed
CAS
Google Scholar
Reid MB, Stokic DS, Koch SM, Khawli FA, Leis AA. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94(6):2468–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matuszczak Y, Farid M, Jones J, Lansdowne S, Smith MA, Taylor AA, et al. Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve. 2005;32(5):633–8.
Article
PubMed
CAS
Google Scholar
Cobley JN, McGlory C, Morton JP, Close GL. N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metabol. 2011;21(6):451–61.
Article
CAS
Google Scholar
Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem. 2015;290(1):209–27.
Article
PubMed
CAS
Google Scholar
Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci. 1990;87(12):4879–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Biokhim. 2005;70(2):222–30.
Article
CAS
Google Scholar
Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.
Article
PubMed
CAS
Google Scholar
James AM, Smith RAJ, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys. 2004;423(1):47–56.
Article
PubMed
CAS
Google Scholar
Ingold KU, Bowry VW, Stocker R, Walling C. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc Natl Acad Sci. 1993;90(1):45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol. 2020:101673.
Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30(7):1019–26.
Article
PubMed
CAS
Google Scholar
Bonetti A, Solito F, Carmosino G, Bargossi AM, Fiorella PL. Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects. J Sports Med Phys Fitness. 2000;40(1):51–7.
PubMed
CAS
Google Scholar
Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24(4):293–9.
Article
PubMed
CAS
Google Scholar
Gökbel H, Gül I, Belviranl M, Okudan N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J Strength Cond Res. 2010;24(1):97–102.
Article
PubMed
Google Scholar
Alf D, Schmidt ME, Siebrecht SC. Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study. J Int Soc Sports Nutr. 2013;10(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bloomer RJ, Canale RE, McCarthy CG, Farney TM. Impact of oral ubiquinol on blood oxidative stress and exercise performance. Oxidative Med Cell Longev. 2012;2012:465020.
Article
CAS
Google Scholar
Weston SB, Zhou S, Weatherby RP, Robson SJ. Does exogenous coenzyme Q10 affect aerobic capacity in endurance athletes? Int J Sport Nutr. 1997;7(3):197–206.
Article
PubMed
CAS
Google Scholar
Porter DA, Costill DL, Zachwieja JJ, Krzeminski K, Fink WJ, Wagner E, et al. The effect of oral coenzyme Q10 on the exercise tolerance of middle-aged, untrained men. Int J Sports Med. 1995;16(7):421–7.
Article
PubMed
CAS
Google Scholar
Snider IP, Bazzarre TL, Murdoch SD, Goldfarb A. Effects of coenzyme athletic performance system as an ergogenic aid on endurance performance to exhaustion. Int J Sport Nutr Exerc Metab. 1992;2(3):272–86.
Article
CAS
Google Scholar
Matthew Cooke MI, Buford T, Shelmadine B, Hudson G, Kerksick C, Rasmussen C, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance; 2008.
Google Scholar
Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, et al. Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness. 2005;45(3):337–46.
PubMed
CAS
Google Scholar
Svensson M, Malm C, Tonkonogi M, Ekblom B, Sjodin B, Sahlin K. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr. 1999;9(2):166–80.
Article
PubMed
CAS
Google Scholar
Okudan N, Belviranli M, Torlak S. Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men. J Sports Med Phys Fitness. 2018;58(6):889–94.
Article
PubMed
CAS
Google Scholar
Östman B, Sjödin A, Michaëlsson K, Byberg L. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition. 2012;28(4):403–17.
Article
PubMed
CAS
Google Scholar
Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A. 2003;100(9):5407–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paton CD, Hopkins WG. Ergometer error and biological variation in power output in a performance test with three cycle ergometers. Int J Sports Med. 2006;27(06):444–7.
Article
PubMed
CAS
Google Scholar
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med. 2018;115:288–97.
Article
PubMed
CAS
Google Scholar
Katz A, Hernandez A, Caballero DM, Briceno JF, Amezquita LV, Kosterina N, et al. Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism. Pflugers Arch. 2014;466(3):577–85.
Article
PubMed
CAS
Google Scholar
Cheng AJ, Bruton JD, Lanner JT, Westerblad H. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres. J Physiol. 2015;593(2):457–72.
Article
PubMed
CAS
Google Scholar
Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–90.
Article
PubMed
CAS
Google Scholar
Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ<sub>10</sub> improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54(2):322–8.
Article
PubMed
CAS
Google Scholar
Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging. 2014;34(5):377–83.
Article
PubMed
CAS
Google Scholar
Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med. 2017;111:316–27.
Article
PubMed
CAS
Google Scholar
Pham T, MacRae CL, Broome SC, D’souza RF, Narang R, Wang HW, et al. MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. 2020.
Google Scholar
Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.
Article
PubMed
CAS
Google Scholar
Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63.
Article
PubMed
CAS
Google Scholar