Heffernan S, Horner K, De Vito G, Conway G, Heffernan SM, Horner K, et al. The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients. 2019;11(3):696. https://doi.org/10.3390/nu11030696.
Article
CAS
PubMed Central
Google Scholar
Speich M, Pineau A, Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta. 2001;312(1-2):1–11. https://doi.org/10.1016/S0009-8981(01)00598-8.
Article
CAS
PubMed
Google Scholar
Williams MH. Dietary supplements and sports performance: minerals. J Int Soc Sports Nutr. 2005;2(1):43. https://doi.org/10.1186/1550-2783-2-1-43.
Article
PubMed
PubMed Central
Google Scholar
Prashanth L, Kattapagari K, Chitturi R, Baddam VR, Prasad L. A review on role of essential trace elements in health and disease. J Dr NTR Univ Heal Sci. 2015;4:75.
Article
Google Scholar
Wolinsky I, Driskell JA. Sports nutrition: vitamins and trace elements: CRC Press; 2005.
Google Scholar
Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15. https://doi.org/10.1016/j.jtemb.2016.02.006.
Article
CAS
PubMed
Google Scholar
Tapiero H, DáM T, Tew KD. Trace elements in human physiology and pathology copper. Biomed Pharmacother. 2003;57(9):386–98. https://doi.org/10.1016/s0753-3322(03)00012-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hordyjewska A, Popiołek Ł, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014;27(4):611–21. https://doi.org/10.1007/s10534-014-9736-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins JF. Copper: Basic Physiological and Nutritional Aspects. In: Collins JF, editor. Mol Genet Nutr Asp Major Trace Miner. Cambridge: Academic Press; 2016. p. 69–83.
Prohaska JR. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr. 2011;2(2):89–95. https://doi.org/10.3945/an.110.000208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker ZN, Cobine PA, Leary SC. The mitochondrion: a central architect of copper homeostasis. Metallomics. 2017;9(11):1501–12. https://doi.org/10.1039/C7MT00221A.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson MA, Fischer JG, Kays SE. Is copper an antioxidant nutrient? Crit Rev Food Sci Nutr. 1992;32(1):1–31. https://doi.org/10.1080/10408399209527578.
Article
CAS
PubMed
Google Scholar
Lightfoot DJ, McGrann GR, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. Mol Plant Pathol. 2017;18(3):323–35. https://doi.org/10.1111/mpp.12399.
Article
CAS
PubMed
Google Scholar
Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22(1):439–58. https://doi.org/10.1146/annurev.nutr.22.012502.114457.
Article
CAS
PubMed
Google Scholar
Vashchenko G, MacGillivray RT. Multi-copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289–313. https://doi.org/10.3390/nu5072289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ. Modern nutrition in health and disease. Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ, editors. Philadelphia: Lippincott Williams and Wilkins; 2006.
Solano F. On the metal cofactor in the tyrosinase family. Int J Mol Sci. 2018;19(2). https://doi.org/10.3390/ijms19020633.
Maynar-Mariño M, Grijota FJ, Bartolomé I, Siquier-Coll J, Román VT, Muñoz D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J Int Soc Sports Nutr. 2020;17:1–7.
Article
Google Scholar
Rodriguez Tuya I, Pinilla Gil E, Maynar Mariño M, García-Moncó Carra RM, Sánchez MA. Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol Occup Physiol. 1996;73(3-4):299–303. https://doi.org/10.1007/BF02425490.
Article
CAS
PubMed
Google Scholar
Maynar M, Bartolomé I, Alves J, Barrientos G, Grijota FJ, Robles MC, et al. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J Int Soc Sports Nutr. 2019;16(1):53. https://doi.org/10.1186/s12970-019-0322-7.
Muñoz D, Maynar M, Barrientos G, Siquier-Coll J, Bartolomé I, Grijota FJ, et al. Effect of an acute exercise until exhaustion on the serum and urinary concentrations of cobalt, copper, and manganese among well-trained athletes. Biol Trace Elem Res. 2019;189(2):387–94. https://doi.org/10.1007/s12011-018-1500-1.
Maynar M, Llerena F, Bartolomé I, Alves J, Robles M-C, Grijota F-J, et al. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J Int Soc Sports Nutr. 2018;15(1):8. https://doi.org/10.1186/s12970-018-0212-4.
Maynar M, Grijota FJ, Siquier-Coll J, Bartolome I, Robles MC, Muñoz D. Erythrocyte concentrations of chromium, copper, manganese, molybdenum, selenium and zinc in subjects with different physical training levels. J Int Soc Sports Nutr. 2020;17:1–9.
Article
Google Scholar
Siquier-Coll J, Bartolomé I, Perez-Quintero M, Grijota FJ, Arroyo J, Muñoz D, et al. Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J Therm Biol. 2019;86:102425.
Article
CAS
Google Scholar
Piomelli S, Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol Wiley Online Library. 1993;42(1):46–52. https://doi.org/10.1002/ajh.2830420110.
Article
CAS
Google Scholar
Harker LA. The kinetics of platelet production and destruction in man. Clin Haematol. 1977;6(3):671–93.
CAS
PubMed
Google Scholar
Porta J, Galiano D, Tejedo A, González JM. Valoración de la composición corporal. Utopías y realidades. In: Esparza Ros F (Ed). Manual de Cineantropometría. Madrid; Grupo Español de Cineantropometría; 1993. p. 113–170.
Stewart A, Marfell-Jones M, Olds T, Ridder de H. International Society for the Advancement of Kinantropometry. In: Int Stand Anthr Assessment Aust Low Hutt, New Zeal Int Soc Adv Kinanthropometry; 2001.
Google Scholar
Moreiras O, Carbajal A, Cabrera L, Cuadrado C. Tablas de composición de alimentos: guía de prácticas. Madrid: Pirámide; 2016.
Google Scholar
Hagströmer M, Oja P, Sjöström M. The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr Cambridge University Press. 2006;9(6):755–62. https://doi.org/10.1079/PHN2005898.
Article
Google Scholar
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB.
Article
PubMed
Google Scholar
Aibar A, García González L, Abarca Sos A, Murillo B, Zaragoza J. Testing the validity of the international physical activity questionnaire in early spanish adolescent: a modified protocol for data collection. Sport TK Rev Euroam Ciencias Deport. 2016;5(2):123–32.
Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014;1:19–25.
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge Academic; 1988.
Google Scholar
Lu Y, Ahmed S, Harari F, Vahter M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol. 2015;29:249–54. https://doi.org/10.1016/j.jtemb.2014.08.012.
Article
CAS
PubMed
Google Scholar
Catalani S, Marini M, Consolandi O, Gilberti ME, Apostoli P. Potenzialità ed utilità del dosaggio di elementi metallici nelle piastrine. G Ital Med Lav Erg. 2008;30:115–8.
CAS
Google Scholar
Heitland P, Köster HD. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J Trace Elem Med Biol. 2021;64:126706. https://doi.org/10.1016/j.jtemb.2020.126706.
Article
CAS
PubMed
Google Scholar
San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sport Med. 2018;48(2):467–79. https://doi.org/10.1007/s40279-017-0751-x.
Article
Google Scholar
Lukaski HC, Siders WA, Hoverson BS, Gallagher SK. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med. 1996;17(07):535–40. https://doi.org/10.1055/s-2007-972891.
Article
CAS
PubMed
Google Scholar
Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human; 2007. https://doi.org/10.1007/978-3-540-32714-1.
Book
Google Scholar
Calleja CA, Hurtado MMC, Daschner Á, Escámez PF, Abuín CMF, Pons RMG, et al. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la población española: Rev del Com Científico la AESAN. Agencia Española de Seguridad Alimentaria y Nutrición; 2019. p. 43–68.
Google Scholar
Lukaski HC, Bolonchuk WW, Klevay LM, Milne DB, Sandstead HH. Maximal oxygen consumption as related to magnesium, copper, and zinc nutriture. Am J Clin Nutr. 1983;37(3):407–15. https://doi.org/10.1093/ajcn/37.3.407.
Article
CAS
PubMed
Google Scholar
Gropper SS, Sorrels LM, Blessing D. Copper status of collegiate female athletes involved in different sports. Int J Sport Nutr Exerc Metab. 2003;13(3):343–57. https://doi.org/10.1123/ijsnem.13.3.343.
Article
CAS
PubMed
Google Scholar
Nuviala RJ, Lapieza MG, Bernal E. Magnesium, zinc, and copper status in women involved in different sports. Int J Sport Nutr. 1999;9(3):295–309. https://doi.org/10.1123/ijsn.9.3.295.
Article
CAS
PubMed
Google Scholar
Dressendorfer RH, Sockolov R. Hypozincemia in runners. Phys Sportsmed. 1980;8(4):97–100. https://doi.org/10.1080/00913847.1980.11710918.
Article
CAS
PubMed
Google Scholar
Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J. 2003;44(6):979–86. https://doi.org/10.3349/ymj.2003.44.6.979.
Article
CAS
PubMed
Google Scholar
Rakhra G, Masih D, Vats A, Verma SK, Singh VK, Rana RT, et al. Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition. 2017;43–44:75–82.
Article
Google Scholar
Lukaski HC, Hoverson BS, Gallagher SK, Bolonchuk WW. Physical training and copper, iron, and zinc status of swimmers. Am J Clin Nutr. 1990;51(6):1093–9. https://doi.org/10.1093/ajcn/51.6.1093.
Article
CAS
PubMed
Google Scholar
Koury JC, de Olilveria AV Jr, Portella ES, de Olilveria CF, Lopes GC, Donangelo CM. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metab. 2004;14(3):358–72. https://doi.org/10.1123/ijsnem.14.3.358.
Article
CAS
PubMed
Google Scholar
Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med. 2002;73:991–5.
CAS
PubMed
Google Scholar
Aruoma OI, Reilly T, MacLaren D, Halliwell B. Iron, copper and zinc concentrations in human sweat and plasma; the effect of exercise. Clin Chim Acta. 1988;177(1):81–7. https://doi.org/10.1016/0009-8981(88)90310-5.
Article
CAS
PubMed
Google Scholar
Dowdy RP, Burt J. Effect of intensive, long-term training on copper and iron nutriture in man. Fed Proc. Rockville Pike: Federation of American Societies for Experimental Biology; 1980. p. 786.
Holloszy JO. Adaptation of skeletal muscle to endurance exercise. Med Sci Sports. 1975;7:155.
CAS
PubMed
Google Scholar
Holloszy JO. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82. https://doi.org/10.1016/S0021-9258(18)96046-1.
Article
CAS
PubMed
Google Scholar
Tumulty D. Physiological characteristics of elite football players. Sport Med. 1993;16(2):80–96. https://doi.org/10.2165/00007256-199316020-00002.
Article
Google Scholar
Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101(1):17–22. https://doi.org/10.1113/EP085319.
Article
CAS
PubMed
Google Scholar
Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol Front. 2017;8:713.
Article
Google Scholar
Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sport Med. 2018;48(8):1809–28. https://doi.org/10.1007/s40279-018-0936-y.
Article
Google Scholar
Singh A, Deuster PA, Moser PB. Zinc and copper status in women by physical activity and menstrual status. J Sports Med Phys Fitness. 1990;30(1):29–36.
CAS
PubMed
Google Scholar
Mena P, Maynar M, Gutierrez JM, Maynar J, Timon J, Campillo JE. Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med. 1991;12(06):563–6. https://doi.org/10.1055/s-2007-1024734.
Article
CAS
PubMed
Google Scholar
Kies C. Copper bioavailability and metabolism: Springer Science & Business Media; 1989. https://doi.org/10.1007/978-1-4613-0537-8.
Book
Google Scholar
Vitoux D, Arnaud J, Chappuis P. Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology? J Trace Elem Med Biol. 1999;13(3):113–28. https://doi.org/10.1016/S0946-672X(99)80001-7.
Article
CAS
PubMed
Google Scholar
Nishito Y, Kambe T. Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol (Tokyo). 2018;64(1):1–7. https://doi.org/10.3177/jnsv.64.1.
Article
CAS
Google Scholar
Fischer PW, Giroux A, L’abbe MR. The effect of dietary zinc on intestinal copper absorption. Am J Clin Nutr. 1981;34(9):1670–5. https://doi.org/10.1093/ajcn/34.9.1670.
Article
CAS
PubMed
Google Scholar
Wapnir RA, Balkman C. Inhibition of copper absorption by zinc. Biol Trace Elem Res. 1991;29(3):193–202. https://doi.org/10.1007/BF03032677.
Article
CAS
PubMed
Google Scholar
Kiem J, Borberg H, Iyengar GV, Kasperek K, Siegers M, Feinendegen LE, et al. Elemental composition of platelets. Part II. Water content of normal human platelets and measurements of their concentrations of cu, Fe, K, and Zn by neutron activation analysis. Clin Chem. 1979;25(5):705–10. https://doi.org/10.1093/clinchem/25.5.705.
Abella A, Clerc D, Chalas J, Baret A, Leluc R, Lindenbaum A. Concentrations of superoxide dismutase (copper and manganese), catalase and glutathione peroxidase in red cells, platelets and plasma in patients with rheumatoid polyarthritis. Ann Biol Clin (Paris). 1987;45:152.
CAS
Google Scholar
Laškaj R, Dodig S, Čepelak I, Kuzman I. Superoxide dismutase, copper and zinc concentrations in platelet-rich plasma of pneumonia patients. Ann Clin Biochem. 2009;46(2):123–8. https://doi.org/10.1258/acb.2008.008178.
Article
CAS
PubMed
Google Scholar