Skip to main content

Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium

A Correction to this article was published on 30 June 2020

This article has been updated



The present study aimed to determine changes occurring in the erythrocyte concentrations of Iron (Fe), Magnesium (Mg) and Phosphorous (P) of subjects with different levels of physical training living in the same area of Extremadura (Spain).


Thirty sedentary subjects (24.34 ± 3.02 years) without sports practice and a less active lifestyle, formed the control group (CG); 24 non-professional subjects (23.53 ± 1.85 years), who perform between 4 and 6 h/week of moderate sports practice without any performance objective and without following systematic training formed the group of subjects with a moderate level of training (MTG), and 22 professional cyclists (23.29 ± 2.73 years) at the beginning of their sports season, who performed more than 20 h/week of training, formed the high-level training group (HTG). Erythrocyte samples from all subjects were collected and frozen at − 80 °C until analysis. Erythrocyte analysis of Fe, Mg and P was performed by inductively coupled plasma mass spectrometry (ICP-MS). All results are expressed in μg/g Hb.


The results showed that there were statistically significant lower concentrations of erythrocyte Fe, Mg and P in MTG and HTG than CG. All parameters (Fe, Mg and P concentrations in erythrocytes) correlated inversely with physical training.


Physical exercise produces a decrease in erythrocyte concentrations of Fe, Mg and P. This situation could cause alterations in the performance of athletes given the importance of these elements. For this reason, we recommend an erythrocyte control at the beginning, and during the training period, to avoid harmful deficits.


The concentration of mineral elements is usually under strict homeostatic control; however, physical activity alters this mechanism and brings changes in their serum levels [1,2,3,4]. Some studies report on the mineral concentrations in plasma, serum and urine. However, very few studies show the concentrations of the elements in the cellular compartment, and even less report on the influence of physical exercise on the cellular level of the mineral elements.

Fe is present mainly in the form of three proteins, hemoglobin in the red blood cells, myoglobin found in muscle cells and mitochondrial cytochromes [5, 6]. The deficiency of hemoglobin iron causes a decrease in oxygen transport to exercising muscles, thereby reducing physical work performance. Also, the deficit of non-heme Fe, which constitutes only around 1% of total body iron, may have detrimental effects for performance.

Often, these deficiencies have been observed by assessing indirect markers of iron concentration in the body such as the number of red blood cells, hemoglobin, hematocrit, ferritin and / or transferrin [7, 8]. However, we have not found studies showing these low intracellular concentrations of Fe.

Mg is the second most common intracellular cation, a mineral that acts in numerous metabolic processes related to physical activity [9, 10], and that also has a fundamental role as a cofactor in more than 300 enzymes involved in energy metabolism [10, 11]. Adequate body values of Mg are essential in physical activity, and a fall in body Mg can induce a drop in exercise performance, and, in the worst cases can lead to inflammatory responses, and an increase in oxidative stress [12]. So, adequate body Mg content can be critical for physical activity. Mg depletion can be caused by inadequate intake, excessive alcohol intake and increased sweating rates during exercise [13, 14]. It is usually evaluated by plasma and/or serum concentrations.

Phosphorus (P) is one of the most abundant mineral in the body, and plays an essential role in several aspects of cellular metabolism, including adenosine triphosphate (ATP) synthesis, which is the source of energy for many cellular reactions, and 2, 3-diphosphoglycerate concentration, which regulates the dissociation of oxygen from hemoglobin [15, 16]. Three major mechanisms are responsible for the maintenance of systemic phosphate homeostasis: intestinal uptake, retention or release from the bone, and renal reabsorption. Phosphorus also is an essential component of phospholipids in cell membranes. Changes in phosphorus content, concentration, or both, modulate the activity of some metabolic pathways [16, 17]. Like Mg, the concentrations of this mineral are measured in plasma or serum. Maynar-Mariño et al. [18] observed lower values of Mg and P in athletes than sedentary subjects, but it is unknown how these concentrations can affect intracellular values of these elements. Due to the deficiencies found in the extracellular compartment, it may be very important to observe the concentrations of these elements in erythrocytes, and the influence of physical activity on these values.

Therefore, it is essential to evaluate the influence of physical activity on the erythrocyte concentrations of several mineral elements that are involved in critical functions of the body during exercise. There are several studies about the acute effect of these minerals [19,20,21], but the effect of physical training on these elements in erythrocytes is still incomplete. What values of these mineral elements are found inside the cells of subjects who perform physical activity? To answer this question, the objective of this study was to evaluate the erythrocyte concentrations of Fe, Mg and P, in subjects who do not perform physical activity, in subjects who perform exercises of moderate intensity and in high-level training athletes.

Materials and methods


Thirty sedentary subjects, with an age of 24.34 ± 3.02 years, without sports practice and a less active lifestyle formed the control group (CG). Twenty-four non-professional subjects with an age of 23.53 ± 1.85 years, who perform between 4 and 6 h/week of moderate sports practice without any performance objective that imply an active lifestyle, without following any systematic training formed the group of subjects with a moderate degree of training (MTG). Twenty-two high-level athletes, professional cyclists at the beginning of their sports season, with an age of 23.29 ± 2.73, who performed more than 20 h/week of training, formed the high-level training group (HTG). On the basis of the total of hours/week of training, the subjects were classified into three categories: low (CG), moderate (MTG) and high (HTG).

Each participant had to satisfy the following criteria in order to be included in our study: to be male, non-smokers and not to have any health problems. The participants could not take any vitamins, minerals or other supplements during the study.

They were informed about the aim and procedures of the study, gave their informed consent and participated voluntarily. The University of Extremadura Ethics Committee approved the investigation according to the latest version of the Helsinki declaration for human research.

Anthropometric measurements

The morphological characteristics of the participants were measured in the morning and always at the same time and in identical conditions. Body height was measured to the nearest 0.1 cm using a wall-mounted stadiometer (Seca 220. Hamburg. Germany). Body weight was measured to the nearest 0.01 kg using calibrated electronic digital scales (Seca 769. Hamburg. Germany) in nude, barefoot conditions. Body fat content was estimated from the sum of 6 skinfolds (∑6) (abdominal, suprailiac, tricipital and subscapularis, thigh and calf skinfolds). The skinfold thicknesses were measured with a Harpenden calliper (Holtain Skinfold Caliper. Crosswell, UK). All measurements were made by the same operator, skilled in kinanthropometric techniques, by the International Society for the Advancement of Kinanthropometry recommendations. All measurements were taken on the right side of the subject’s body. Heart rate and blood pressure were determined using an automatic sphygmomanometer (Omron HEM-780. Osaka. Japan) by a skilled technician, always after a five-minute rest period in the supine position.

Nutritional evaluation

To guarantee they were following a similar diet, all participants completed a dietary questionnaire. The questionnaire consisted of a 3-day daily nutritional record, on two pre-assigned weekdays and one weekend day. On each day, participants individually indicated the type, frequency and quantity (in grams) of every food consumed, then the nutritional composition of their diets was evaluated using different food composition tables [22,23,24].

Incremental test until exhaustion

An exercise test was used to evaluate the performance variables. The test consisted of a progressive load until exhaustion, on a cycle ergometer (Ergoline 900; Bitz, Germany) equipped with a gas analyzer (Metamax. Cortex Biophysik. Gmbh. Germany) and a Polar pulsometer (Polar. Norway).

Depending on the degree of training, two different protocols were used. The effort protocol used for the HTG consisted of 1 min entirely at rest, 15 min of warm-up, ending with 5 min at 100 watts; then starting at 150 watts and increasing the intensity by 25 watts every 3 min until reaching the maximum power they could maintain. In the case of MTG and CG, it consisted of 1 min entirely at rest, 15 min of warm-up ending with 5 min at 40 watts; then starting at 50 watts and increasing the intensity by 25 watts every 3 min until reaching the maximum power they could maintain. All tests were carried out under similar atmospheric conditions (21–24 °C and 45–55% relative humidity and atmospheric pressure between 700 and 715 mmHg).

The choice of these protocols was based on previous studies in which a slight increase in intensity was recommended for each step [25] and an adequate duration of the test (until exhaustion) to obtain VO2 max [26], as well as an adaptation based on the subject’s training level. Therefore, although starting with different loads, all the groups would face tests of similar duration and with the same increase in intensity [27]. The test was carried out on a cycle ergometer because of the greater accessibility for the collection of blood samples during the trial.

Training intensity and volume were reduced the two previous days applying a regenerative load to avoid fatigue in the test.

Sample collection

Blood samples

After a fasting period of 8 h and before the test, 5 mL of venous blood was extracted from the antecubital vein of each participant using a plastic syringe fitted with a stainless-steel needle. Once extracted, the samples were collected into a metal-free polypropylene tube (previously washed with diluted nitric acid) with EDTA as anticoagulant. The blood samples were immediately centrifuged for 10 min at 3000 rpm. The plasma was separated, and the erythrocytes were washed with 0.9% sodium chloride (NaCl) three times. The erythrocytes were aliquoted into Eppendorf tubes (previously washed with diluted nitric acid) and conserved at − 80 °C until biochemical analysis.

Determination of hematocrit and hemoglobin

The hematocrits were obtained by centrifuging the whole blood into a glass capillary containing heparin in a Microcen microfuge (Alresa. Spain). Hemoglobin (Hb) was determined using a Hb analyzer (HemoCue. Sweden).

Erythrocytes elements determination

Sample preparation

The analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS). To prepare the analysis, the decomposition of the organic matrix was achieved by heating it for 10 h at 90 °C after the addition of 0.8 mL HNO3 and 0.4 mL H2O2 to 2 mL of serum samples. The samples were then dried at 200 °C on a hot plate. Sample reconstitution was carried out by adding 0.5 mL of nitric acid, 10 μL of Indium (In) (10 mg/L) as an internal standard, and ultrapure water to complete 10 mL.

Standard and reference material preparation

Reagent blanks, element standards and certified reference material (Seronorm, lot 0511545, Sero AS Billingstand, Norway) were prepared identically and used for accuracy testing. Before the analysis, the commercial control materials were diluted according to the manufacturer’s recommendation.

Sample analysis

Digested solutions were assayed by an ICP-MS Nexion model 300D (PerkinElmer, Inc., Shelton, CT, USA) equipped with a triple quadrupole mass detector and a reaction cell/collision device that allows operation in three modes: without reaction gas (STD); by kinetic energy discrimination (KED) with helium as the collision gas; and in reaction mode (DRC) with ammonia as the reaction gas. Both collision and reaction gases such as plasmatic argon had a purity of 99.999% and were supplied by Praxair (Madrid, Spain). Two mass flow controllers regulated gas flows. The frequency of the generator was free-swinging and worked at 40 Mhz. Three replicates were analyzed per sample. The sample quantifications were performed with indium (In) as an internal standard. The values of the standard materials of each element (10 μg/L) used for quality controls were in agreement with intro and inter-assay variation coefficients of less than 5%.

Statistical evaluations

Statistical analyses were carried out with the SPSS 20.0 for Windows. The results are expressed as x ± s, where x is the mean value and s the standard deviation.

The Dixon Q test was used to identify outliers. These values were analyzed to evaluate if their magnitude warranted their elimination from the analyses. Afterward, an exploration of the different variables was carried out to determine normality, using the Shapiro-Wilks test, recommended for samples of less than 30 individuals. Subsequently, a comparison of the behavior of the variables among the three groups was made, using an ANOVA test, and applying a Bonferroni test later on if there was significance.

A Pearson correlation study was carried out to ascertain if there was a relationship between erythrocyte changes in the concentrations of the elements and physical training. A significant difference was considered when p < 0.05.


Table 1, shows the anthropometric data of CG, MTG and HTG. As can be observed, the significantly decreased total weight and body fat percentage in MTG and HTG, indicate the adaptive consequences of training.

Table 1 Characteristics of the three groups in the study

The results of some ergoespirometric parameters are also shown. A significant increase in both training groups, can also be observed as would be expected. The data correspond to high endurance intensity training athletes and subjects with a medium and normal condition. Maximal VO2 and VE were significantly higher in the two training groups than controls. Maximal HR was lower in the control group than the training groups, and basal HR was lower in the training groups than the controls.

Table 2, presents the daily intake of Fe, Mg and P. The results are presented in mg/d. No differences among groups were found.

Table 2 Daily intake of Fe, Mg and P in CG and sportsmen classified by the level of training

Table 3 shows the results for hemoglobin and hematocrit. Both parameters were similar in the three groups.

Table 3 Hemoglobin and hematocrit values in CG and sportsmen classified by the level of training

Table 4 presents the erythrocyte concentrations of Fe, Mg and P. The results are presented in μg/gHb, given that the major protein in the erythrocyte is hemoglobin and thus the results obtained in all cases are more solid.

Table 4 Concentrations of Fe, Mg and P in CG and sportsmen classified by the level of training

Fe, Mg and P concentrations were lower in MTG and HTG (p < 0.001) than CG. GMT presented a higher concentration of Fe than HTG (p < 0.05).

Table 5, showed the correlations between the three elements and training. Results are expressed with a correlation coefficient (r) and with significance level (p). We found that the erythrocyte concentrations of Fe, Mg and P showed a higher (p = 0.000) correlation with training.

Table 5 Correlations among the 76 subjects, represented by the r; statistical significance, Fe, Mg and P and the level of training


As previously mentioned, possible deficiencies in Fe, Mg and P are usually evaluated in plasma or serum, but not in the intracellular compartment. Due to the importance of these elements for cell functions, it is necessary to know what occurs in the intracellular compartment when a deficiency is observed in the extracellular one (a balance between both compartments is required to maintain proper cell function). If a difference were observed, the cell functions could be affected.

In the present study, we evaluated the concentrations of Fe, Mg and P in erythrocytes of different subject groups (CG, MTG, HTG) with the aim of reflecting the cell concentrations. The analysis of elements in erythrocytes has many advantages. Whole blood (and consequently, red blood cells) are readily available; the lifetime of erythrocytes, which is 120 days, can give us retrospective information about their deposits. Also, the concentration in erythrocytes is not subject to transient variations such as those found in plasma or serum.

We used three well-differentiated groups for this study, as is reflected in Table 1. The effect of the regular practice of physical exercise can be observed in the MTG and HTG groups and the cardiorespiratory and anthropometric adaptations.

No significant changes were found when evaluating the results of the daily intake of the elements.

When evaluating the results of this study, we found that the subjects who exercised regularly presented significantly lower erythrocyte concentrations of Fe, Mg and P, than those subjects who did not exercise regularly and that these concentrations were correlated with the training.

Fe deficiency is the most common nutritional deficiency in the world, even in the wealthiest countries [28]. Athletes, particularly women and adolescents, are at an increased risk of depleting their Fe deposits to a state of functional or absolute deficiency that, if not recognized or treated, can develop into sideropenic anemia [29]. When Fe deposits are inadequate, physical performance may decrease, presenting fatigue, intolerance to exercise and various cognitive impairments [30,31,32].

Drops in Fe can result from some clinical and pathological conditions, hemorrhages, peptic ulcer, stomach cancer and ulcerative colitis. In general, apart from the Fe losses due to sweating, which can be considerable [33], there must be other Fe requirements that are associated with changes in blood levels. For example, athletes require high intakes of Fe because of their larger volume of blood, gastrointestinal bleeding and hemolysis that occur due to stress and repeated damage [34, 35]. Furthermore, during the performance of physical exercise, an alarming increase in the expression of hepcidin has been seen as a result of a negative balance of Fe in the athletes [36].

Our study showed significantly lower Fe erythrocyte concentrations in the two groups of athletes (MTG and HTG) than CG, although there were no significant differences in the Hb of the different groups. Moreover, the lowest Fe concentrations were found in the HTG.

The concentrations of Fe in CG were similar to those recently presented by Lu et al. [37] with the same technique as in our study. However, MTG and HTG presented lower values than CG in this parameter. These results could indicate a Fe deficiency in high-level athletes’ erythrocytes, which could have a negative consequence in relation to oxygen transport and performance.

Fe had a very significant inverse correlation (r = − 0.744, p < 0.001) with training degree, with lower values the more trained the subjects, which would indicate that this deficit could be due to the changes produced by intense training. These low values would probably be related to deficiencies in iron, as some studies have indicated [36, 38, 39], produced by the same mechanisms as previously mentioned.

The diagnosis of Mg deficiencies is problematic because low plasma Mg concentrations may occur in patients with normal intracellular concentrations and pronounced intracellular deficiencies can occur with normal plasma values [40,41,42].

Maynar et al. [43] reported that physical exercise can influence the serum concentration of magnesium in sports people. One of the most common findings, in some investigations, is a decrease in plasma magnesium levels after physical exercise [44]. Also, a plasma and serum decrease in Mg levels has been observed when studying the effects of the practice of long-term endurance exercise (marathon or cross-country skiing) [45, 46]. Several studies have indicated that athletes are deficient in Mg [13, 47]. Maintaining adequate concentrations of magnesium is necessary for athletes to sustain an appropriate level of athletic performance given the importance of this element in the use of high energy molecules, in muscle contraction and in maintaining the properties of cell membranes [48]. Thereby, an alternative method for estimating the Mg store includes direct measurements of intracellular Mg using skeletal muscle [49], erythrocyte [50, 51], or lymphocytes [52]. The erythrocyte concentration of Mg has become popular in the evaluation of body status of Mg [41, 53,54,55].

In the current study, the erythrocyte concentration of Mg was significantly lower in HTG and MTG than CG, which would be related to the lower serum concentrations found by Maynar-Mariño et al. (2015) in athletes. Recent research obtained similar results during a cycling race [44]. There is also a very high correlation with the degree of training as shown in Table 5. Given the importance of the intraerythrocytic concentration of Mg in body levels, the results indicate that our athletes had a deficit in Mg, as Maynar-Mariño et al. [18] reported in high level athletes, using the same technique in serum. This could reduce their performance, given the importance of this element as discussed above. In the same way as Fe, there was a very high correlation of Mg with training level. Therefore, physical training would be an important factor involved in the erythrocyte values of Mg. On the other hand, there is greater sweating in athletes, which could lead to this situation since this element is eliminated in this way. Also, another possible loss would be because of a redistribution of Mg during exercise to tissues and cells, because different studies confirm that a magnesium flow occurs during and after aerobic physical exercise [13, 56].

P is necessary for a multitude of reactions in which energy is required, being basic in the production of energy molecules such as adenosine triphosphate (ATP), creatine phosphate and phosphoenolpyruvic acid. It also contributes to the control of the acid-base balance in the blood.

In our study, we found, as in the case of Fe and Mg, that erythrocyte concentrations were significantly lower in subjects who practiced physical activity than in the CG and are inversely correlated with the athletes’ degree of training (p < 0.001; r = − 0.568), as was the case with Mg. So, the subjects with a higher level of training present lower concentrations of P. Maynar-Mariño et al. (2015) observed significantly lower serum concentrations in athletes of high regional level compared to CG [43]. Therefore, our study suggests decreased concentrations in the intracellular compartment in trained subjects too, which could reflect alterations in cell functions, including myopathy, ultrastructural changes and skeletal muscle injuries [57, 58].

The causes of this decline in the elements studied in athletes could be: a deficient intake of these in the diet of the athlete or overhydration in the subjects who perform training as a known mechanism to this effect occurs in the initial phases of physical training in aerobic athletes. However, the lower levels of these elements in athletes could not be due to a deficit in the diet since there were no differences between groups in the intake of these metals. Nonetheless, hyperhydration in the cellular compartment would lead to a higher dilution of the elements contained in the erythrocytes and a lower concentration. Previous research shows intracellular deficits of Fe, Mg and P, related to those found in serum by Maynar-Mariño et al. [18]. Additionally, recent research observed a drop in baseline erythrocyte concentration of Mg in two groups (with and without supplementation of Mg) during a professional cyclist race [44]. Besides, the mentioned paper reported that there is a greater release of erythrocyte Mg in order to alleviate the oxidative stress caused by exercise. Elsewhere, the redistribution of blood during exercise could decrease the blood flow to the intestine and impair the absorption of these elements [59, 60].

In relation to Fe, many deficits are known, evaluated with related parameters, like hematocrit or hemoglobin or ferritin. We only determined the hematocrit and hemoglobin concentration, with similar results in both groups. However, we cannot affirm that an extracellular deficiency was present, because we did not obtain the concentration of plasmatic ferritin. But a low concentration of Fe was obtained in the erythrocytes because of the physical training,

For this reason, we believe that it is necessary to carry out studies in which this phenomenon can be taken into account [61].


In conclusion, our study reveals an erythrocyte deficiency in Fe, Mg and P in subjects who perform physical training, which does not exist in subjects who do not practice regular exercise, and these deficiencies are correlated with sports training. Therefore, we believe that the cell evaluation of Fe, Mg and P should be performed in athletes who perform systematic training before and during their training phase to detect early any deficiency of these elements that could lead the athlete to a decrease in performance.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Change history

  • 30 June 2020

    An amendment to this paper has been published and can be accessed via the original article.


2,3 DFG:



Adenosine triphosphate


Control group



H2O2 :

Hydrogen peroxide




Heart rate


High training group


Inductively coupled plasma mass spectrometry


International Physical Activity Questionnaire


Metabolic equivalent task




Moderate training group




Expiratory Volume

VO2 :

Oxygen Consumption




Sum of 6 skinfolds


  1. Maynar M, Llerena F, Grijota FJ, Alves J, Robles MC, Bartolomé I, et al. Serum concentration of several trace metals and physical training. J Int Soc Sports Nutr. 2017;14:19.

    PubMed  PubMed Central  Google Scholar 

  2. Molina-López J, Molina JM, Chirosa LJ, Florea D, Sáez L, Millán E, et al. Association between erythrocyte concentrations of magnesium and zinc in high-performance handball players after dietary magnesium supplementation. Magnes Res. 2012;25:79–88.

    PubMed  Google Scholar 

  3. Dellavalle DM, Haas JD. Iron supplementation improves energetic efficiency in Iron-depleted female rowers. Med Sci Sport Exerc. 2014;46:1204–15.

    CAS  Google Scholar 

  4. Heffernan S, Horner K, De Vito G, Conway G, Heffernan SM, Horner K, et al. The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients. 2019;11:696.

    CAS  PubMed Central  Google Scholar 

  5. Agget PJ. Iron. In: Erdman Jr JW, McDonald IA, Zeisel SH, editors. Present knowledge in nutrition. 10th ed. Iowa: Wiley-Blackwell; 2012. p. 506–20.

  6. Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med. 2014;45:92–102.

    PubMed  Google Scholar 

  7. Clénin GE, Cordes M, Huber A, Schumacher YO, Noack P, Scales J, et al. Iron deficiency in sports - definition, influence on performance and therapy: consensus statement of the Swiss Society of Sports Medicine. Swiss Med Wkly. 2015;145:w14196.

    PubMed  Google Scholar 

  8. Coates A, Mountjoy M, Burr J. Incidence of iron deficiency and Iron deficient anemia in elite runners and triathletes. Clin J Sport Med. 2017;27:493–8.

    PubMed  Google Scholar 

  9. Buchman AL, Keen C, Commisso J, Killip D, Ou CN, Rognerud CL, et al. The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr. 1998;17:124–7.

    CAS  PubMed  Google Scholar 

  10. Chaudhary DP, Sharma R, Bansal DD. Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res. 2010;134:119–29.

    CAS  PubMed  Google Scholar 

  11. Fawcett WJ, Haxby EJ, Male DA. Magnesium: physiology and pharmacology; 1999.

    Google Scholar 

  12. Veronese N, Berton L, Carraro S, Bolzetta F, De Rui M, Perissinotto E, et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr. 2014;100:974–81.

    CAS  PubMed  Google Scholar 

  13. Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19:180–9.

    CAS  PubMed  Google Scholar 

  14. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E. Renal tubular dysfunction in chronic alcohol abuse -- effects of abstinence. N Engl J Med. 1993;329:1927–34.

    PubMed  Google Scholar 

  15. Kiela PR, Radhakrishnan VM, Ghishan FK. Phosphorus: basic nutritional aspects. In: Molecular, genetic, and nutritional aspects of major and trace minerals. London: Academic; 2017. p. 413–27.

  16. Bremner K, Bubb WA, Kemp GJ, Trenell MI, Thompson CH. The effect of phosphate loading on erythrocyte 2,3-bisphosphoglycerate levels. Clin Chim Acta. 2002;323:111–4.

    CAS  PubMed  Google Scholar 

  17. Malliaropoulos N, Tsitas K, Porfiriadou A, Papalada A, Ames PR, Del Buono A, et al. Blood phosphorus and magnesium levels in 130 elite track and field athletes. Asian J Sport Med. 2013;4:49–53.

    Google Scholar 

  18. Maynar-Mariño M, Crespo C, Llerena F, Grijota F, Alves J, Muñoz D, et al. Inluence of physical exercise on serum concentration of magnesium and phosphorus. Med dello Sport. 2015;68:577–84.

    Google Scholar 

  19. Siquier-Coll J, Bartolomé I, Perez-Quintero M, Grijota FJ, Robles MC, Muñoz D, et al. Influence of a physical exercise until exhaustion in normothermic and hyperthermic conditions on serum, erythrocyte and urinary concentrations of magnesium and phosphorus. J Therm Biol. 2019;80:1–6.

    CAS  PubMed  Google Scholar 

  20. Siquier-Coll J, Bartolomé I, Pérez-Quintero M, Grijota FJ, Muñoz D, Maynar-Mariño M. Effect of heat exposure and physical exercise until exhaustion in normothermic and hyperthermic conditions on serum, sweat and urinary concentrations of magnesium and phosphorus. J Therm Biol. 2019;84:176–84.

    CAS  PubMed  Google Scholar 

  21. Laires MJ, Monteiro C. Exercise, magnesium and immune function. Magnes Res. 2008;21:92–6.

    CAS  PubMed  Google Scholar 

  22. Moreiras O, Carbajal A, Cabrera L, Cuadrado C. Tablas De Composicion De Alimentos: guia de prácticas; 2016.

    Google Scholar 

  23. Kabata-Pendias A, Mukherjee A. Trace elements from soil to human. Heidelberg: Springer; 2007.

    Google Scholar 

  24. Reilly C. The nutritional trace metals. Oxford: Blackwell Publishing Ltd; 2004.

    Google Scholar 

  25. Bogaard HJ, Woltjer HH, Van Keimpema ARJ, Postmus PE, De Vries PMJM. Prediction of peak oxygen uptake in men using pulmonary and hemodynamic variables during exercise. Med Sci Sports Exerc. 2000;32:701–5.

    CAS  PubMed  Google Scholar 

  26. Bentley DJ, McNaughton LR. Comparison of Wpeak, VO2peak and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. J Sci Med Sport. 2003;6:422–35.

    CAS  PubMed  Google Scholar 

  27. Niemelä K, Palatsi I, Takkunen J. The oxygen uptake - work-output relationship of runners during graded cycling exercise: sprinters vs. endurance runners. Br J Sports Med. 1980;14:204–9.

    PubMed  PubMed Central  Google Scholar 

  28. Looker AC. Prevalence of iron deficiency in the United States. JAMA. 1997;277:973–6.

    CAS  PubMed  Google Scholar 

  29. Beard J, Tobin B. Iron status and exercise. Am J Clin Nutr. 2000;72(2 Suppl):594s–7s.

    CAS  PubMed  Google Scholar 

  30. Auersperger I, Skof B, Leskosek B, Knap B, Jerin A, Lainscak M. Exercise-induced changes in iron status and hepcidin response in female runners. PLoS One. 2013;8:e58090.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr. 2007;85:778–87.

    CAS  PubMed  Google Scholar 

  32. Schumacher YO, Schmid A, Grathwohl D, Bültermann D, Berg A. Hematological indices and iron status in athletes of various sports and performances. Med Sci Sports Exerc. 2002;34:869–75.

    PubMed  Google Scholar 

  33. Brune M, Magnusson B, Persson H, Hallberg L. Iron losses in sweat. Am J Clin Nutr. 1986;43:438–43.

    CAS  PubMed  Google Scholar 

  34. Lyle RM, Weaver CM, Sedlock DA, Rajaram S, Martin B, Melby CL. Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods. Am J Clin Nutr. 1992;56:1049–55.

    CAS  PubMed  Google Scholar 

  35. Weaver CM, Rajaram S. Exercise and iron status. J Nutr. 1992;122(suppl_3):782–7.

    CAS  PubMed  Google Scholar 

  36. Latunde-Dada GO. Iron metabolism in athletes - achieving a gold standard. Eur J Haematol. 2013;90:10–5.

    CAS  PubMed  Google Scholar 

  37. Lu Y, Ahmed S, Harari F, Vahter M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol. 2015;29:249–54.

    CAS  PubMed  Google Scholar 

  38. Broadbent S. Seasonal changes in haematology, lymphocyte transferrin receptors and intracellular iron in ironman triathletes and untrained men. Eur J Appl Physiol. 2011;111:93–100.

    CAS  PubMed  Google Scholar 

  39. Fallon KE. The clinical utility of screening of biochemical parameters in elite athletes: analysis of 100 cases. Br J Sport Med. 2008;42:334–7.

    CAS  Google Scholar 

  40. Abraham GE, Lubran MM. Serum and red cell magnesium levels in patients with premenstrual tension. Am J Clin Nutr. 1981;34:2364–6.

    CAS  PubMed  Google Scholar 

  41. Al Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: perspectives and research directions. Int J Endocrinol. 2018;2018:1–17.

    Google Scholar 

  42. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1):i3–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maynar-Marino M, Crespo C, Llerena F, Grijota F, Alves J, Munoz D, et al. Influence of hysical exercise on serum concentration of magnesium and phosphorus. Med DELLO Sport. 2015;68:577–84.

    Google Scholar 

  44. Córdova A, Mielgo-Ayuso J, Roche E, Caballero-García A, Fernandez-Lázaro D. Impact of magnesium supplementation in muscle damage of professional cyclists competing in a stage race. Nutrients. 2019;11:1927.

    PubMed Central  Google Scholar 

  45. Bohl CH, Volpe SL. Magnesium and exercise. Crit Rev Food Sci Nutr. 2002;42:533–63.

    CAS  PubMed  Google Scholar 

  46. Kawabe N, Suzuki M, Machida K, Shiota M. Magnesium metabolism after a full-marathon race. Med Sci Sports Exerc. 1999;31:189.

    Google Scholar 

  47. Seelig MS. Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review). J Am Coll Nutr. 1994;13:429–46.

    CAS  PubMed  Google Scholar 

  48. Volpe SL. Magnesium and the athlete. Curr Sport Med Rep. 2015;14:279–83.

    Google Scholar 

  49. Gullestad L, Midtvedt K, Dolva LO, Norseth J, Kjekshus J. The magnesium loading test: reference values in healthy subjects. Scand J Clin Lab Invest. 1994;54:23–31.

    CAS  PubMed  Google Scholar 

  50. Millart H, Durlach V, Durlach J. Red blood cell magnesium concentrations: analytical problems and significance. Magnes Res. 1995;8:65–76.

    CAS  PubMed  Google Scholar 

  51. Widmer J, Henrotte J-G, Raffin Y, Bovier P, Hilleret H, Gaillard J-M. Relationship between erythrocyte magnesium, plasma electrolytes and cortisol, and intensity of symptoms in major depressed patients. J Affect Disord. 1995;34:201–9.

    CAS  PubMed  Google Scholar 

  52. Al-Khursany I, Thomas TH, Harrison K, Wilkinson R. Reduced erythrocyte and leukocyte magnesium is associated with cyclosporin treatment and hypertension in renal transplant patients. Nephrol Dial Transplant. 1992;7:251–5.

    CAS  PubMed  Google Scholar 

  53. Corica F, Allegra A, Ientile R, Buemi M. Magnesium concentrations in plasma, erythrocytes, and platelets in hypertensive and normotensive obese patients. Am J Hypertens. 1997;10:1311–3.

    CAS  PubMed  Google Scholar 

  54. Moorkens G, Manuel Y, Keenoy B, Vertommen J, Meludu S, Noe M, De Leeuw I. Magnesium deficit in a sample of the Belgian population presenting with chronic fatigue. Magnes Res. 1997;10:329–37.

    CAS  PubMed  Google Scholar 

  55. Workinger J, Doyle R, Bortz J, Workinger JL, Doyle RP, Bortz J. Challenges in the diagnosis of magnesium status. Nutrients. 2018;10:1202.

    PubMed Central  Google Scholar 

  56. Lukaski HC. Magnesium, zinc, and chromium nutrition and athletic performance. Can J Appl Physiol. 2001;26:S13–22.

    CAS  PubMed  Google Scholar 

  57. Bussière FI, Gueux E, Rock E, Girardeau J-P, Tridon A, Mazur A, et al. Increased phagocytosis and production of reactive oxygen species by neutrophils during magnesium deficiency in rats and inhibition by high magnesium concentration. Br J Nutr. 2002;87:107–13.

    PubMed  Google Scholar 

  58. Zhang Y, Xun P, Wang R, Mao L, He K. Can magnesium enhance exercise performance? Nutrients. 2017;9:946.

    PubMed Central  Google Scholar 

  59. Lukaski HC, Nielsen FH. Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr. 2002;132:930–5.

    CAS  PubMed  Google Scholar 

  60. Rowell LB. Ideas about control of skeletal and cardiac muscle blood flow (1876-2003): cycles of revision and new vision. J Appl Physiol. 2004;97:384–92.

    PubMed  Google Scholar 

  61. Kenney WL, Wilmore J, Costill D. Physiology of sport and exercise. In: Human kinetics. 6th ed; 2015.

    Google Scholar 

Download references


The research was conducted in the laboratory of Physiology of the Sport Sciences Faculty (University of Extremadura).


No funding.

Author information

Authors and Affiliations



MMM designed the study; data were collected and analyzed by MMM, FJG, VTR and JS-C; DM and IB undertook data interpretation and manuscript preparation. All the authors approved the final version of the paper.

Corresponding author

Correspondence to Diego Muñoz.

Ethics declarations

Ethics approval and consent to participate

This research was carried out according to the Helsinki Declaration ethic guidelines, updated at the World Medical Assembly in Seoul in 2008, for research with human subjects. All the participants were informed about the purpose of the study and gave their voluntary signed informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariño, M.M., Grijota, F.J., Bartolomé, I. et al. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J Int Soc Sports Nutr 17, 8 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: