Alaunyte I, Stojceska V, Plunkett A, Derbyshire E. Dietary iron intervention using a staple food product for improvement of iron status in female runners. J Int Soc Sports Nutr. 2014;11:50.
Article
PubMed
PubMed Central
Google Scholar
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics. 2009;2:2.
Article
PubMed
PubMed Central
Google Scholar
Punduk Z, Oral O, Ozkayin N, Rahman K, Varol R. Single dose of intra-muscular platelet rich plasma reverses the increase in plasma iron levels in exercise-induced muscle damage: a pilot study. J Sport Health Sci. 2016;5:109–14.
Article
Google Scholar
Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003;531:81–92.
Article
CAS
PubMed
Google Scholar
Howard CT, Mckakpo US, Quakyi IA, Bosompem KM, Addison EA, Sun K, Sullivan D, Semba RD. Relationship of hepcidin with parasitemia and anemia among patients with uncomplicated plasmodium falciparum malaria in Ghana. Am J Trop Med Hyg. 2007;77:623–6.
PubMed
Google Scholar
Mainous 3rd AG, Diaz VA. Relation of serum ferritin level to cardiovascular fitness among young men. Am J Cardiol. 2009;103:115–8.
Article
CAS
PubMed
Google Scholar
Lee DH, Liu DY, Jacobs Jr DR, Shin HR, Song K, Lee IK, Kim B, Hider RC. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care. 2006;29:1090–5.
Article
CAS
PubMed
Google Scholar
Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A. Tumor necrosis factor-alpha-induced reactive oxygen species formation is mediated by jnk1-dependent ferritin degradation and elevation of labile iron pool. Free Radic Biol Med. 2007;43:265–70.
Article
CAS
PubMed
Google Scholar
Sullivan JL. Is stored iron safe? J Lab Clin Med. 2004;144:280–4.
Article
CAS
PubMed
Google Scholar
Kortas J, Prusik K, Flis D, Prusik K, Ziemann E, Leaver N, Antosiewicz J. Effect of Nordic walking training on iron metabolism in elderly women. Clin Interv Aging. 2015;10:1889–96.
PubMed
PubMed Central
Google Scholar
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working G. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.
Article
PubMed
PubMed Central
Google Scholar
Li L. The financial burden of physical inactivity. J Sport Health Sci. 2014;3:58–9.
Article
Google Scholar
Lakka TA, Nyyssonen K, Salonen JT. Higher levels of conditioning leisure time physical activity are associated with reduced levels of stored iron in Finnish men. Am J Epidemiol. 1994;140:148–60.
Article
CAS
PubMed
Google Scholar
Antosiewicz J, Kaczor JJ, Kasprowicz K, Laskowski R, Kujach S, Luszczyk M, Radziminski L, Ziemann E. Repeated “all out” interval exercise causes an increase in serum hepcidin concentration in both trained and untrained men. Cell Immunol. 2013;283:12–7.
Article
CAS
PubMed
Google Scholar
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.
Article
CAS
PubMed
Google Scholar
Charley PJ, Sarkar B, Stitt CF, Saltman P. Chelation of iron by sugars. Biochim Biophys Acta. 1963;69:313–21.
Article
CAS
PubMed
Google Scholar
O’Dell BL. Fructose and mineral metabolism. Am J Clin Nutr. 1993;58:771S–8S.
PubMed
Google Scholar
Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PW, Wood RJ. Dietary factors associated with the risk of high iron stores in the elderly Framingham heart study cohort. Am J Clin Nutr. 2002;76:1375–84.
CAS
PubMed
Google Scholar
Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, Malenka DJ, Ozaki CK, Lavori PW. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J Natl Cancer Inst. 2008;100:996–1002.
Article
CAS
PubMed
Google Scholar
Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;86:803–11.
Article
CAS
PubMed
Google Scholar
Tuomainen TP, Nyyssonen K, Salonen R, Tervahauta A, Korpela H, Lakka T, Kaplan GA, Salonen JT. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care. 1997;20:426–8.
Article
CAS
PubMed
Google Scholar
Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, Swinkels DW, Trinder D. Iron status and the acute post-exercise hepcidin response in athletes. Plos One. 2014;9:e93002.
Article
PubMed
PubMed Central
Google Scholar
Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sanchez-Lozada LG. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.
CAS
PubMed
Google Scholar
Kasprowicz K, Ziemann E, Ratkowski W, Laskowski R, Kaczor JJ, Dadci R, Antosiewicz J. Running a 100-km ultra-marathon induces an inflammatory response but does not raise the level of the plasma iron-regulatory protein hepcidin. J Sports Med Phys Fitness. 2013;53:533–7.
CAS
PubMed
Google Scholar
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. Il-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen BK, Febbraio M. Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav Immun. 2005;19:371–6.
Article
CAS
PubMed
Google Scholar