Kendler BS. Garlic (Allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease. Prev Med. 1987;16:670–85.
Article
CAS
PubMed
Google Scholar
Keys A. Wine, garlic and CHD in seven countries. Lancet. 1980;1:145–6.
Article
CAS
PubMed
Google Scholar
Silagy C, Neil A. Garlic as a lipid lowering agent-a meta-analysis. J R Coll Physicians Lond. 1994;28:39–45.
CAS
PubMed
Google Scholar
Stevinson C, Pittler MH, Ernst E. Garlic for treating hypercholesterolemia. A meta-analysis of randomized clinical trials. Ann Intern Med. 2000;133:420–9.
Article
CAS
PubMed
Google Scholar
Ziaei S, Hantoshzadeh S, Rezasoltani P, Lamyian M. The effect of garlic tablet on plasma lipids and platelet aggregation in nulliparous pregnants at high risk of preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2001;99:201–6.
Article
CAS
PubMed
Google Scholar
Steiner M, Lin RI. Aged garlic extract, a modulator of cardiovascular risk factors. J Nutr. 2001;131 Suppl 3:980–4.
Google Scholar
McMahon FG, Vargas R. Can garlic lower blood pressure? A pilot study. Pharmacotherapy. 1993;13:406–7.
CAS
PubMed
Google Scholar
Vorberg G, Schneider B. Therapy with garlic: results of a placebo-controlled, double-blind study. Br J Clin Pract. 1990;44 suppl 69:7–11.
Google Scholar
Bordia A, Bansai HC, Arora SK, Singh SV. Effect of the essential oils of garlic and onions on alimentary hyperlipemia. Atherosclerosis. 1975;21:15–9.
Article
CAS
PubMed
Google Scholar
Bordia AK, Joshi HK, Sanadhya YK, Bhu N. Effect of essential oil of garlic on serum fibrinolytic activity in patients with coronary artery disease. Atherosclerosis. 1977;28:155–9.
Article
CAS
PubMed
Google Scholar
Bordia AR, Samadhya SK, Rathore AS, Bhu N. Essential oil of garlic on blood lipids and fibrinolytic activity in patients of coronary artery disease. Jr Assoc Phys. 1978;26:327–31.
CAS
Google Scholar
Arora R, Arora S, Gupta RK. The long-term use of garlic in ischemic heart disease. Atherosclerosis. 1981;40:175–9.
Article
CAS
PubMed
Google Scholar
Chutani SK, Bordia A. The effect of fried versus raw garlic on fibrinolytic activity in man. Atherosclerosis. 1981;38:417–21.
Article
CAS
PubMed
Google Scholar
Bordia A, Sharma KD, Parmar YK, Verma SK. Protective effect of garlic oil on the changes produced by 3 weeks of fatty diet on serums cholestrerol, serum triglycerides, fibrinolytic activity and platelet adhesiveness in man. Indian Heart J. 1982;34:86–8.
CAS
PubMed
Google Scholar
Gadkari JV, Joshi VD. Effect of ingestion of raw garlic on serum cholesterol level, clotting time and fibrinolytic activity in normal subjects. J Postgrad Med. 1991;37:128–31.
CAS
PubMed
Google Scholar
Legnani C, Frascaro M, Guazzaloca G, Ludovici S, Cesarano G, Coccheri S. Effects of a dried garlic preparation on fibrinolysis and platelet aggregation in healthy subjects. Arzneim Forsch Drug Res. 1993;43:119–22.
CAS
Google Scholar
Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. N Eng J Med. 1993;329:1677–83.
Article
CAS
Google Scholar
Ciampricotti R, El Gamal M, Relik T, Taverne R, Panis J, de Swart J, et al. Clinical characteristics and coronary angiographic findings of patients with unstable angina, acute myocardial infarction, and survivors of sudden ischemic death occurring during and after sport. Am Heart J. 1990;120:1267–78.
Article
CAS
PubMed
Google Scholar
Morihara N, Sumioka I, Moriguchi T, Naoto U, Kyo E. Aged garlic extract enhances production of nitric oxide. Life Sci. 2002;71:509–17.
Article
CAS
PubMed
Google Scholar
Morihara N, Ushujima M, Kashimoto N, Sumioka I, Nishihama T, Hayama M, et al. Aged garlic extract ameliorates physical fatigue. Biol Pharm Bull. 2006;29:962–6.
Article
CAS
PubMed
Google Scholar
Das I, Khan NS, Sooranna SR. Potent activation of nitric oxide synthase by garlic: a basis for its therapeautic applications. Curr Med Res Opin. 1995;13:257–63.
Article
CAS
PubMed
Google Scholar
Williams MJA, Sutherland WHF, McCormick MP, Yeoman DJ, de Jong SA. Aged garlic extract improves endothelial function in men with coronary artery disease. Phytother Res. 2005;19:314–9.
Article
CAS
PubMed
Google Scholar
Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation. 1989;79:101–6.
Article
CAS
PubMed
Google Scholar
Paton CM, Nagelkirk PR, Coughlin AM, Cooper JA, Davis DA, Hassouna H, et al. Changes in von willebrand factor and fibrinolysis following a post-exercise cool-down. Eur J Appl Physiol. 2004;92:328–33.
Article
CAS
PubMed
Google Scholar
Cooper JA, Nagelkirk PR, Coughlin AM, Pivarnik JM, Womack CJ. Temporal changes in tPA and PAI-1 after maximal exercise. Med Sci Sport Exerc. 2004;36:1884–7.
Article
Google Scholar
Beaumont V, Greenleag JE, Juhos L. Disproportional changes in hematocrit, plasma volume, and proteins during exercise and bed rest. J Appl Physiol. 1972;33:55–61.
PubMed
Google Scholar
Betik AC, Luckham VB, Hughson RL. Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol. 2004;286:H442–8.
CAS
Google Scholar
Kooijman M, Thijssen DHJ, de Groot PCE, Bleeker MWP, van Kuppevelt HJM, Green DJ, et al. Flow- mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans. J Physiol. 2008;586:1137–45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harris RA, Nishiyama SK, Wray DW, Richardson RS. Ultrasound assessment of flow-mediated dilation. Hypertension. 2010;55:1075–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dyson KS, Shoemaker JK, Hughson RL. Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am J Physiol Heart Circ Physiol. 2006;290:H1446–53.
Article
CAS
PubMed
Google Scholar
Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1985;11:625–41.
Article
CAS
PubMed
Google Scholar
Parker BA, Ridout SJ, Proctor DN. Age and flow-mediated dilation: a comparison of dilatory responsiveness in the brachial and popliteal arteries. Am J Physiol Heart Circ Physiol. 2006;291:H3043–9.
Article
CAS
PubMed
Google Scholar
Pyke KE, Poitras V, Tschakovsky ME. Brachial artery flow-mediated dilation during handgrip exercise: evidence for endothelial transduction of the mean shear stimulus. Am J Physiol Heart Circ Physiol. 2008;294:H2669–79.
Article
CAS
PubMed
Google Scholar
Pyke KE, Tschakovsky ME. Peak vs. total reactive hyperemia: which determines the magnitude of flow-mediated dilation? J Appl Physiol. 2007;102:1510–9.
Article
PubMed
Google Scholar
Kizhakekuttu TJ, Gutterman DD, Phillips SA, Jurva JW, Arthur EIL, Das E, et al. Measuring FMD in the brachial artery: how important is QRS gating? J Appl Physiol. 2010;109:959–65.
Article
PubMed Central
PubMed
Google Scholar
Kiesewetter H, Jung F, Mrowietz C, Pindur G, Heiden M, Wenzel E. Effects of garlic on blood fluidity and fibrinolytic activity: a randomized, placebo-controlled double-blind study. Br J Clin Pract Suppl. 1990;69:24–9.
CAS
PubMed
Google Scholar
Jung EM, Jung F, Mrowietz C, Kiesewetter H, Pindur G, Wenzel E. Influence of garlic powder on cutaneous microcirculation. Arzneim Forsch Drug Res. 1991;41:626–30.
CAS
Google Scholar
Rognmo Ø, Bjørnstad TH, Kahrs C, Tjønna AE, Bye A, Haram PM, et al. Endothelial function in highly endurance trained men: effects of acute exercise. J Strength Cond Res. 2008;22:535–42.
Article
PubMed
Google Scholar
Silber HA, Ouyang P, Bluemke DA, Gupta SN, Foo TK, Lima JA. Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging. Am J Physiol Heart Circ Physiol. 2005;288:822–88.
Article
Google Scholar
Morihara N, Nishihama T, Ushihima M, Ide N, Takeda H, Hayama M. Garlic as an anti-fatigue agent. Mol Nutr Food Res. 2007;51:1329–34.
Article
CAS
PubMed
Google Scholar
Ince DI, Sonmez GT, Ince ML. Effects of garlic on aerobic performance. Turk J Med Sci. 2000;30:557–61.
CAS
Google Scholar