Daily urinary excretion of creatine increased in both groups from baseline (0.4±0.5; 1.9±1.4, 3.5±2.4, 4.4±3.2, 3.9±2.6, 5.2±3.1 g/d; p=0.001) with no differences observed between groups (CrM+P 0.34±0.4, 1.9±1.6, 3.5±2.3, 4.7±3.3, 3.2±2.8, 5.0±3.4; CrM+RT 0.5±0.6, 1.7±1.1, 3.4±2.7, 4.2±3.3, 4.6±2.2, 5.4±3/2 g/d; p=0.59). Whole body daily creatine retention increased following supplementation (0.0±0.0; 8.2±1.4, 6.5±2.4, 5.6±3.2, 6.1±2.6, 4.8±3.2 g/d; p=0.001) with no differences observed between groups (CrM+P 0.0±0.0, 8.1±1.6, 6.5±2.4, 5.3±3.2, 6.8±2.8, 5.0±3.4; CrM+RT 0.0±0.0, 8.3±1.1, 6.6±2.7, 5.8±3.3, 5.4±2.2, 4.6±3.2 g/d; p=0.59). Total whole body creatine retention during the supplementation period were not significantly different among groups expressed in total grams retained (CrM+P 31.7±11.1; CrM+RT 30.6±10.3 g; p=0.82) or percentage retained (CrM+P 63.4±22.3%; CrM+RT 61.2±19.9%; p=0.82) over the supplementation period. There was significant variability in muscle phosphagen levels, therefore, only muscle free creatine data are reported. After 3 and 5-days of supplementation, respectively, both supplementation protocols demonstrated a significant increase in muscle free creatine content from baseline (4.8±16.7, 15.5±23.6 mmol/kg DW, p=0.01) with no significant differences observed between groups (CrM+P 9.3±14.3, 22.8±28.2; CrM+RT 0.3±18.4, 8.1±16.2 mmol/kg DW; p=0.34). In percentage terms, muscle free creatine content in both groups increased over time (p=0.008) by 10.9±27% and 23.5±34% after 3 and 5-days, respectively, with no differences observed between groups (CrM+P 0.0±0.0, 21.1±30, 37.3±42; CrM+RT 0.0±0.0, 0.7±21, 9.6±18 %, p=0.13).