Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J, Ivy JL, Antonio J: International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008, 5: 17-10.1186/1550-2783-5-17.
Article
PubMed Central
PubMed
Google Scholar
Ivy J, Portman R: Nutrient Timing: The Future of Sports Nutrition. 2004, North Bergen, NJ: Basic Health Publications
Google Scholar
Candow DG, Chilibeck PD: Timing of creatine or protein supplementation and resistance training in the elderly. Appl Physiol Nutr Metab. 2008, 33 (1): 184-90. 10.1139/H07-139.
Article
CAS
PubMed
Google Scholar
Hulmi JJ, Lockwood CM, Stout JR: Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab (Lond). 2010, 7: 51-10.1186/1743-7075-7-51.
Article
Google Scholar
Kukuljan S, Nowson CA, Sanders K, Daly RM: Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: an 18-mo randomized controlled trial. J Appl Physiol. 2009, 107 (6): 1864-73. 10.1152/japplphysiol.00392.2009.
Article
CAS
PubMed
Google Scholar
Lambert CP, Flynn MG: Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med. 2002, 32 (8): 511-22. 10.2165/00007256-200232080-00003.
Article
PubMed
Google Scholar
MacDougall JD, Ray S, Sale DG, McCartney N, Lee P, Garner S: Muscle substrate utilization and lactate production. Can J Appl Physiol. 1999, 24 (3): 209-15. 10.1139/h99-017.
Article
CAS
PubMed
Google Scholar
Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, Lambert CP, Zachweija JJ: Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991, 70 (4): 1700-6.
CAS
PubMed
Google Scholar
Goodman CA, Mayhew DL, Hornberger TA: Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal. 2011, 23 (12): 1896-906. 10.1016/j.cellsig.2011.07.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001, 3 (11): 1014-9. 10.1038/ncb1101-1014.
Article
CAS
PubMed
Google Scholar
Jacinto E, Hall MN: Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 2003, 4 (2): 117-26. 10.1038/nrm1018.
Article
CAS
PubMed
Google Scholar
Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K: Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 2008, 7 (2): 159-72. 10.1016/j.cmet.2007.11.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
McBride A, Ghilagaber S, Nikolaev A, Hardie DG: The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009, 9 (1): 23-34. 10.1016/j.cmet.2008.11.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B, Richter EA: Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003, 284 (4): E813-22.
Article
CAS
PubMed
Google Scholar
Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S: Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol. 2005, 99 (3): 950-6. 10.1152/japplphysiol.00110.2005.
Article
CAS
PubMed
Google Scholar
Churchley EG, Coffey VG, Pedersen DJ, Shield A, Carey KA, Cameron-Smith D, Hawley JA: Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol. 2007, 102 (4): 1604-11.
Article
CAS
PubMed
Google Scholar
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G: Mammalian TOR: a homeostatic ATP sensor. Science. 2001, 294 (5544): 1102-5. 10.1126/science.1063518.
Article
CAS
PubMed
Google Scholar
Camera DM, West DW, Burd NA, Phillips SM, Garnham AP, Hawley JA, Coffey VG: Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol. 2012, 113 (2): 206-14. 10.1152/japplphysiol.00395.2012.
Article
CAS
PubMed
Google Scholar
Lemon PW, Mullin JP: Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol. 1980, 48 (4): 624-9.
CAS
PubMed
Google Scholar
Blomstrand E, Saltin B, Blomstrand E, Saltin B: Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol. 1999, 514 (1): 293-302. 10.1111/j.1469-7793.1999.293af.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ivy JL: Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1998, 19 (Suppl 2): S142-5.
Article
CAS
PubMed
Google Scholar
Richter EA, Derave W, Wojtaszewski JF: Glucose, exercise and insulin: emerging concepts. J Physiol. 2001, 535 (Pt 2): 313-22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Derave W, Lund S, Holman GD, Wojtaszewski J, Pedersen O, Richter EA: Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am J Physiol. 1999, 277 (6 Pt 1): E1103-10.
CAS
PubMed
Google Scholar
Kawanaka K, Nolte LA, Han DH, Hansen PA, Holloszy JO: Mechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats. Am J Physiol Endocrinol Metab. 2000, 279 (6): E1311-8.
CAS
PubMed
Google Scholar
O’Gorman DJ, Del Aguila LF, Williamson DL, Krishnan RK, Kirwan JP: Insulin and exercise differentially regulate PI3-kinase and glycogen synthase in human skeletal muscle. J Appl Physiol. 2000, 89 (4): 1412-9.
PubMed
Google Scholar
Berardi JM, Price TB, Noreen EE, Lemon PW: Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006, 38 (6): 1106-13. 10.1249/01.mss.0000222826.49358.f3.
Article
CAS
PubMed
Google Scholar
Ivy JL, Goforth HW, Damon BM, McCauley TR, Parsons EC, Price TB: Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002, 93 (4): 1337-44.
Article
CAS
PubMed
Google Scholar
Zawadzki KM, Yaspelkis BB, Ivy JL: Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992, 72 (5): 1854-9.
CAS
PubMed
Google Scholar
Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD: Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997, 83 (6): 1877-83.
CAS
PubMed
Google Scholar
Jentjens RL, van Loon LJ, Mann CH, Wagenmakers AJ, Jeukendrup AE: Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001, 91 (2): 839-46.
CAS
PubMed
Google Scholar
Jentjens R, Jeukendrup A: Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003, 33 (2): 117-44. 10.2165/00007256-200333020-00004.
Article
PubMed
Google Scholar
Roy BD, Tarnopolsky MA: Influence of differing macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J Appl Physiol. 1998, 84 (3): 890-6.
CAS
PubMed
Google Scholar
Parkin JA, Carey MF, Martin IK, Stojanovska L, Febbraio MA: Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997, 29 (2): 220-4. 10.1097/00005768-199702000-00009.
Article
CAS
PubMed
Google Scholar
Fox AK, Kaufman AE, Horowitz JF: Adding fat calories to meals after exercise does not alter glucose tolerance. J Appl Physiol. 2004, 97 (1): 11-6. 10.1152/japplphysiol.01398.2003.
Article
PubMed
Google Scholar
Biolo G, Tipton KD, Klein S, Wolfe RR: An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997, 273 (1 Pt 1): E122-9.
CAS
PubMed
Google Scholar
Kumar V, Atherton P, Smith K, Rennie MJ: Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol. 2009, 106 (6): 2026-39. 10.1152/japplphysiol.91481.2008.
Article
CAS
PubMed
Google Scholar
Pitkanen HT, Nykanen T, Knuutinen J, Lahti K, Keinanen O, Alen M, Komi PV, Mero AA: Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc. 2003, 35 (5): 784-92. 10.1249/01.MSS.0000064934.51751.F9.
Article
CAS
PubMed
Google Scholar
Biolo G, Williams BD, Fleming RY, Wolfe RR: Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999, 48 (5): 949-57. 10.2337/diabetes.48.5.949.
Article
CAS
PubMed
Google Scholar
Fluckey JD, Vary TC, Jefferson LS, Farrell PA: Augmented insulin action on rates of protein synthesis after resistance exercise in rats. Am J Physiol. 1996, 270 (2 Pt 1): E313-9.
CAS
PubMed
Google Scholar
Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD: Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol. 1991, 261 (6 Pt 1): E809-14.
CAS
PubMed
Google Scholar
Gelfand RA, Barrett EJ: Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987, 80 (1): 1-6. 10.1172/JCI113033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heslin MJ, Newman E, Wolf RF, Pisters PW, Brennan MF: Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol. 1992, 262 (6 Pt 1): E911-8.
CAS
PubMed
Google Scholar
Kettelhut IC, Wing SS, Goldberg AL: Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev. 1988, 4 (8): 751-72. 10.1002/dmr.5610040805.
Article
CAS
PubMed
Google Scholar
Kim DH, Kim JY, Yu BP, Chung HY: The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology. 2008, 9 (1): 33-47. 10.1007/s10522-007-9114-6.
Article
CAS
PubMed
Google Scholar
Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ: Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008, 295 (3): E595-604. 10.1152/ajpendo.90411.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P: Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr. 2006, 136 (1 Suppl): 264S-8S.
CAS
PubMed
Google Scholar
Capaldo B, Gastaldelli A, Antoniello S, Auletta M, Pardo F, Ciociaro D, Guida R, Ferrannini E, Sacca L: Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes. 1999, 48 (5): 958-66. 10.2337/diabetes.48.5.958.
Article
CAS
PubMed
Google Scholar
Power O, Hallihan A, Jakeman P: Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids. 2009, 37 (2): 333-9. 10.1007/s00726-008-0156-0.
Article
CAS
PubMed
Google Scholar
Glynn EL, Fry CS, Drummond MJ, Dreyer HC, Dhanani S, Volpi E, Rasmussen BB: Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2010, 299 (2): R533-40. 10.1152/ajpregu.00077.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tipton KD, Ferrando AA, Phillips SM, Doyle D, Wolfe RR: Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999, 276 (4 Pt 1): E628-34.
CAS
PubMed
Google Scholar
Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR: Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003, 35 (3): 449-55. 10.1249/01.MSS.0000053910.63105.45.
Article
CAS
PubMed
Google Scholar
Koopman R, Beelen M, Stellingwerff T, Pennings B, Saris WH, Kies AK, Kuipers H, van Loon LJ: Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab. 2007, 293 (3): E833-42. 10.1152/ajpendo.00135.2007.
Article
CAS
PubMed
Google Scholar
Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, Rennie MJ, Macdonald MJ, Baker SK, Phillips SM: Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011, 43 (7): 1154-61. 10.1249/MSS.0b013e31820751cb.
Article
CAS
PubMed
Google Scholar
Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR: Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. 2004, 96 (2): 674-8. 10.1152/japplphysiol.00333.2003.
Article
CAS
PubMed
Google Scholar
Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, Keizer HA, van Loon LJ: Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005, 288 (4): E645-53.
Article
CAS
PubMed
Google Scholar
Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000, 88 (2): 386-92.
CAS
PubMed
Google Scholar
Tang JE, Manolakos JJ, Kujbida GW, Lysecki PJ, Moore DR, Phillips SM: Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Appl Physiol Nutr Metab. 2007, 32 (6): 1132-8. 10.1139/H07-076.
Article
CAS
PubMed
Google Scholar
Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36 (12): 2073-81.
Article
CAS
PubMed
Google Scholar
Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR: Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab. 2009, 34 (2): 151-61. 10.1139/H09-006.
Article
CAS
PubMed
Google Scholar
Phillips SM, Van Loon LJ: Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011, 29 (Suppl 1): S29-38.
Article
PubMed
Google Scholar
Phillips SM: The science of muscle hypertrophy: making dietary protein count. Proc Nutr Soc. 2011, 70 (1): 100-3. 10.1017/S002966511000399X.
Article
CAS
PubMed
Google Scholar
Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ: Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001, 280 (6): E982-93.
CAS
PubMed
Google Scholar
Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001, 281 (2): E197-206.
CAS
PubMed
Google Scholar
Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB: Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol. 2009, 106 (5): 1730-9. 10.1152/japplphysiol.90395.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR: Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab. 2007, 292 (1): E71-6.
Article
CAS
PubMed
Google Scholar
Coffey VG, Shield A, Canny BJ, Carey KA, Cameron-Smith D, Hawley JA: Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 2006, 290 (5): E849-55. 10.1152/ajpendo.00299.2005.
Article
CAS
PubMed
Google Scholar
Timmons JA: Variability in training-induced skeletal muscle adaptation. J Appl Physiol. 2011, 110 (3): 846-53. 10.1152/japplphysiol.00934.2010.
Article
PubMed Central
PubMed
Google Scholar
Adams G, Bamman MM: Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Comprehensive Physiology. 2012, 2829: 2970-
Google Scholar
Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001, 535 (Pt 1): 301-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cribb PJ, Hayes A: Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006, 38 (11): 1918-25. 10.1249/01.mss.0000233790.08788.3e.
Article
PubMed
Google Scholar
Willoughby DS, Stout JR, Wilborn CD: Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007, 32 (4): 467-77. 10.1007/s00726-006-0398-7.
Article
CAS
PubMed
Google Scholar
Hulmi JJ, Kovanen V, Selanne H, Kraemer WJ, Hakkinen K, Mero AA: Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids. 2009, 37 (2): 297-308. 10.1007/s00726-008-0150-6.
Article
CAS
PubMed
Google Scholar
Verdijk LB, Jonkers RA, Gleeson BG, Beelen M, Meijer K, Savelberg HH, Wodzig WK, Dendale P, van Loon LJ: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009, 89 (2): 608-16. 10.3945/ajcn.2008.26626.
Article
CAS
PubMed
Google Scholar
Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD: Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sport Nutr Exerc Metab. 2009, 19 (2): 172-85.
CAS
PubMed
Google Scholar
Erskine RM, Fletcher G, Hanson B, Folland JP: Whey protein does not enhance the adaptations to elbow flexor resistance training. Med Sci Sports Exerc. 2012, 44 (9): 1791-800. 10.1249/MSS.0b013e318256c48d.
Article
CAS
PubMed
Google Scholar
Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD: Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol. 2000, 88 (2): 452-6.
CAS
PubMed
Google Scholar
Layman DK: Protein quantity and quality at levels above the RDA improves adult weight loss. J Am Coll Nutr. 2004, 23 (6 Suppl): 631S-6S.
Article
CAS
PubMed
Google Scholar
Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ: The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009, 139 (6): 1103-9. 10.3945/jn.108.103853.
Article
CAS
PubMed
Google Scholar
Wilson GJ, Layman DK, Moulton CJ, Norton LE, Anthony TG, Proud CG, Rupassara SI, Garlick PJ: Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats. Am J Physiol Endocrinol Metab. 2011, 301 (6): E1236-42. 10.1152/ajpendo.00242.2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ: Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010, 92 (5): 1080-8. 10.3945/ajcn.2010.29819.
Article
CAS
PubMed
Google Scholar
Bohe J, Low JF, Wolfe RR, Rennie MJ: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001, 532 (Pt 2): 575-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burd NA, Tang JE, Moore DR, Phillips SM: Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009, 106 (5): 1692-701. 10.1152/japplphysiol.91351.2008.
Article
CAS
PubMed
Google Scholar
Breen L, Phillips SM: Interactions between exercise and nutrition to prevent muscle waste during aging. Br J Clin Pharmacol. 2012, 10.1111/j.1365-2125.2012.04456.x. [Epub ahead of print]
Google Scholar
Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM: Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009, 89 (1): 161-8.
Article
CAS
PubMed
Google Scholar
Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, Tarnopolsky MA, Phillips SM: Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012, 108 (10): 1780-8. 10.1017/S0007114511007422.
Article
CAS
PubMed
Google Scholar