For dietary intake, there were no significant differences in total calories/day (p = 0.129) or in the daily amount of protein (p = 0.216), carbohydrate (p = 0.106), and fat (p = 0.665) between groups. For total body mass, both groups increased with training (p = 0.01), but there was no difference between groups (p = 0.793). However, NOSS underwent significant improvements in fat mass (p = 0.226) and fat-free mass (p = 0.023) compared to PLC. Both groups significantly increased muscle strength with training; however, for bench press (p = 0.023) and leg press (p = 0.035) NOSS was significantly greater than PLC. Serum IGF-1 (p = 0.038) and HGF (p = 0.001) were significantly increased with training, but were not different between groups. Myofibrillar protein increased in both groups with training (p = 0.041), with NOSS being significantly greater than PLC (p = 0.050). The levels of Type I, IIA, and IIX MHC were increased in both groups with training; however, Type I (p = 0.013) and IIA (p = 0.05) were significantly greater in NOSS. Muscle c-met was increased with training for both groups (p = 0.030), but not different between groups (p = 0.496). For total DNA, there was no difference between groups (p = 0.322) and neither group was affected by training (p = 0.151). All of the myogenic regulatory factors were increased with training; however, NOSS was significantly greater than PLC for Myo-D (p = 0.038) and MRF-4 (p = 0.001). No significant differences were located for any of the whole blood and serum clinical chemistry markers (p > 0.05).