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Abstract

Background: To examine the effects of varying doses of caffeine on autonomic reactivation following anaerobic
exercise.

Methods: Recreationally active males (N = 20; 24 + 2y) participated in a randomized, double-blind, placebo-
controlled, crossover study where participants ingested: [1] Control (CON; no supplement), [2] a non-caffeinated
placebo (PLA), [3] 3-mg-kg™ ' of caffeine (CAF3) or [4] 6-mg-kg™ " of caffeine (CAF6) prior to Wingate testing.
Parasympathetic (INRMSSD, primary outcome) and global HRV (INSDNN, secondary outcome) were assessed at rest
(i.e, pre-ingestion), 45-min post-ingestion, and 5-min and 35-min post-exercise recovery. We used a GLM to assess
mean (95% Cl) changes from pre-ingestion baseline.

Results: Overall, we observed a significant trend for INRMSSD and InSDNN (both, p =0.001, np2 =0.745). Forty-five
minutes after treatment ingestion, we observed a significant increase in INRMSSD for CAF3 (0.15 ms, 95%Cl, 0.07,
0.24) and CAF6 (0.16 ms, 95%(Cl, 0.06,0.25), both being significant (both, p < 0.004) vs. CON (—0.02 ms, 95%Cl, —0.09,
0.04). Five-minutes after exercise, all treatments demonstrated significant declines in INRMSSD vs. baseline (all,

p < 0.001). After 35-min of recovery, INRMSSD returned to a level not significantly different than baseline for CAF3
(0.03 ms, 95%Cl, — 0.05, 0.12) and CAF6 (= 0.03 ms, 95%Cl, — 0.17, 0.10), while PLA (- 0.16 ms, 95%Cl, — 0.25, — 0.06)
and CON (= 0.17 ms, 95%Cl, —0.28, — 0.07) treatments remained significantly depressed. A similar pattern was also
observed for SONN.

Conclusion: Caffeine ingestion increases resting cardiac autonomic modulation and accelerates post-exercise
autonomic recovery after a bout of anaerobic exercise in recreationally active young men. However, no differences
between caffeine doses on cardiac autonomic reactivity were observed.
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Introduction

Adaptations to exercise training require an appropriate
training stimulus accompanied by sufficient recovery [1].
One factor associated with exercise training and recovery
is the balance between the sympathetic and parasympa-
thetic nervous branches of the autonomic nervous system
(ANS) [2]. Accordingly, an imbalance in ANS between the
training stimuli and recovery can may lead to ANS dysreg-
ulation and negatively impact exercise performance [1, 3].
Fortunately, ANS can be assessed easily and non-
invasively assess heart rate variability (HRV) via heart rate
monitors, thus providing for a useful tool for sports per-
formance and recovery from strenuous exercise.

During exercise, heart rate increases via parasympa-
thetic withdrawal and increased sympathetic activity [2].
HRV becomes useful during training and as it a vali-
dated tool to assess internal training load during and fol-
lowing exercise allowing for the individual evaluation
surrounding training stimuli [1, 3, 4]. Despite the poten-
tial implications of HRYV, the time course of HRV follow-
ing exercise is multifactorial and varies based on
genetics, and the intensity, duration, and mode of exer-
cise [2, 4-6]. Accordingly, exercise intensity seems to
play the greatest role relative an athlete during acute
post exercise HRV recovery, in particular parasympa-
thetic reactivation, is delayed following high intensity ex-
ercise [4, 5, 7]. A potential, yet relatively unexplored
means of improving parasympathetic activity following
strenuous exercise is the ingestion of caffeine.

Caffeine is one of the most popular ergogenic com-
pounds used in sport and supported by a large body of sci-
entific evidence for improving anaerobic and aerobic
activities [8—11]. The ingestion of caffeine influences the
ANS via an increase in catecholamine secretion, which
subsequently increases heart rate and mean arterial blood
pressure at rest and during exercise [12]. Caffeine acts as a
sympathetic stimulus during exercise and has been shown
to attenuate autonomic recovery post-exercise [13, 14] .
However, research findings are mixed, with some studies
showing that 300—400 mg of caffeine delays post-exercise
parasympathetic reactivation [12, 14, 15], while others
have found no effect from caffeine at doses associated with
<3mgkg " body mass [16, 17]. While it is difficult to
compare and contrast results across studies, these incon-
sistent findings may be related to the caffeine dosage used,
which warrants further investigation within athletic popu-
lations. The purpose of this study was to examine the ef-
fects of two dosages of caffeine (3 mgkg™ ' and 6 mgkg ')
on HRYV indices of the ANS following a single bout of high
intensity exercise. The primary outcome measure was root
mean square of the successive differences (rMSSD), a time
domain HRV index reflecting parasympathetic tone. The
secondary outcome for our study was the standard devi-
ation of the NN (R-R) intervals (SDNN). We hypothesized
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that caffeine ingestion would reactivate parasympathetic
markers following a reduction immediately following
exercise.

Methods

Participants

We enrolled healthy, recreationally active males (N = 20,
age: 24+ 2 y; body mass: 74.70 + 7.07 kg; height: 178.8 +
4.64 cm) who engaged in >3 sessions per week or 200—
300 min-wk.” ! of exercise into the study. Inclusion criteria
required participants to have been physically active for the
6-months preceding the study and not habitually consum-
ing caffeine (< 120 mg-day™ '; < 3 days/wk). All participants
signed an informed consent following verbal and written
information of the study design and potential risks before
beginning the study. A health history questionnaire
(HHQ) and physical activity readiness questionnaire
(PAR-Q) were administered in order to ensure partici-
pants were eligible to do high intensity physical activity
safely [18]. Individuals having had orthopedic complica-
tions or cardiovascular, pulmonary, or metabolic disease
were excluded from the study. For all testing sessions, par-
ticipants wore light and comfortable clothing, avoided
strenuous exercise for 48h and caffeine for 24 h. The
study was approved by the Ethics Committee of Islamic
Azad University of Karaj.

Experimental design

The study used a double-blind, placebo-controlled, ran-
domized cross-over design. An independent investigator
not involved in data collection performed randomization
and supplementation preparation. Participants visited
the laboratory on six separate occasions within a 20-day
period, with a minimum of 72h between visits. During
the first visit, the study procedures were explained, in-
formed consent was obtained, and participants com-
pleted various questionnaires, such as the PAR-Q and
HHQ. Participants also recorded their dietary intake
prior to the first experimental day and were asked to
replicate this diet on subsequent visits. Height (cm) was
measured with an electronic stadiometer (SECA 217,
Seca Ltd., Hamburg, Germany) to the nearest 0.01 cm
without shoes and with each participant standing erect
against a wall and body mass (kg) was measured to the
nearest 0.01 kg using a calibrated digital scale (Seca 770-
floor, Seca Ltd., Hamburg, Germany). During the second
visit participants completed a 30-s all-out Wingate An-
aerobic Test (WAnNT) for familiarization and to reduce
the learning effect [19, 20].

During the remaining experimental visits [3—6], partic-
ipants performed the experimental treatments based on
computer generated randomization of four treatments:
[1] control (no treatment), [2] placebo (PLA, non-
caffeinated treatment matched for taste and color), [3] 3
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mgkg ' of caffeine (CAF3) and [4] 6 mgkg™ " of caffeine
(CAF6). All experimental visits were conducted at the
same time of day (between 11:00 and 14:30). To minimize
potential gastrointestinal distress, participants consumed a
standardized snack (white bread and boiled eggs) contain-
ing 3 gkg ! of carbohydrates, 20 g of protein, and 10 g fat
180-240 min before each session. A schematic of the test-
ing protocol is presented in Fig. 1 and is detailed below:

(Time 1) Resting: Pre-Ingestion. Prior to treatment
ingestion, participants sat quietly for 5-min before pro-
viding a resting blood sample to assess blood lactate
(BLa; Lactate Scout plus analyzer, SensLab GmbH,
Germany). A resting HRV was also measured. Follow-
ing these baseline measurements participants then
ingested their respective treatments.

(Time 2) Resting: 45-min Post Ingestion. Forty-five
minutes after treatment ingestion, participants were
assessed again for HRV and BLa. Following this assess-
ment, participants engaged in a standardized warm-up
before performing WAnT testing (detailed below).
(Time 3) Post Exercise: 5-min Post WAnT. Following
their WAnNT, participants were tested immediately for
BLa, ratings of perceived exertion (RPE), and another
HRV measurement was completed 5-min after exercise.
(Time 4) Post Exercise: 35-min post WAnT.
Following the 5-min post exercise assessment, partici-
pants engaged in a passive recovery period, and were
subsequently assessed a final time for HRV and BLa 35
min post exercise.
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Wingate anaerobic test

Participants performed a Wingate Anaerobic Test (WAnT)
using a friction-loaded cycle ergometer (MONARK 894E,
Stockholm, Sweden) connected to a computer as previously
described [19-21]. The ergometer was calibrated before
each test. Briefly, the WANT was a 30-s test requiring par-
ticipants to pedal as fast as possible against a fixed resist-
ance. Each test began with a 4-min standardized warm-up
against a fixed load of 1 kilopond and three separate 2s
sprints were performed against a load of 0.075 kpkg™' of
body mass were interspersed with 45-s of active recovery
[20]. After the warm-up, one minute of light dynamic stretch-
ing was performed. The test protocol began with a verbal
command of “faster, faster, 3,2,1, go”, during which the load of
0.075 kpkg™* body mass [22] was applied. At “go” the partici-
pants were pedaling as fast as possible and each participant
was verbally encouraged to maintain as high of a cadence as
possible over the entire 30-s. No visual or verbal feedback re-
garding the time to complete the test was provided.

Power output in watts was calculated as the product of
resistance and flywheel revolutions, which was recorded
every 1-s, peak power output was determined from the
average of the first 5-s a mean power output was
assessed as the average over the entire 30-s of the test.
Fatigue index was calculated from the difference be-
tween peak 5s power output and the power output that
occurred during the final 5-s of the test divided by the
peak power output multiplied by 100 [21]. The seat
height and handlebars were adjusted such that the knee
would be slightly bent at maximal leg extension and kept

Crossover
Design

>
— 3mg
CAF / \
/
Pre: Y Post-
Ing;:tlon 6 mg Ingestion
Iy _»| cAF a2
5 min grEE] i
45 5 min HRV
HRV : Recording
Recording i
Rest (Rolar
(Polar — | PLA V800)
V800)
Blood
Blood Lactate
Lactate
‘ CON \ /
—

Fig. 1 Schematic representation of the study procedures

Post-exercise
(T3) & (T4):
5 min HRV 35 ml.n Post-
exercise (TS):
I diately
W.SO—S " ?}g‘; al:deé 30 5 min HRV
TUIRE : min Recording
Test minutes Rest lar V800
after (Rolr )
exercise (T4) [ Blood Lactate
Blood
Lactate
— e




Sarshin et al. Journal of the International Society of Sports Nutrition

constant
sessions.

throughout the remaining experimental

Supplementation protocol

Caffeine powder (Cat. No. C0750; Sigma Aldrich) and
PLA (dextrose) treatments were packaged in identical
gelatin capsules (Iran Gelatin Capsule Co. Iran). The
capsules’ ingredients were unknown to participants and
investigators who performed data collection. The PLA
contained 200 mg dextrose, while the caffeine was pro-
vided at two doses: 3 mg-kg™ ' of body mass or 6 mg-kg™*
of body mass.

Heart rate variability measurement

Heart rate variability is a non-invasive tool used to quan-
tify cardiovascular autonomic function based on the
measurement of the timing between consecutive R-R in-
tervals [23, 24]. Briefly, the heart rate monitor strap was
placed on the participant according to the manufacture
instructions. All HRV measurements were collected in a
seated position, within a quiet and dimly lit room with
no external stimuli. The R-R interval data were recorded
at a sampling frequency of 1000 Hz for 5-min and was
synchronized with the Polar Flow web service (Polar
Flow software). Raw unfiltered R-R data was exported as
a space delimitedtext file for analysis of time (Kubios V
2.2, Joensuu, Finland), as previously described [25]. Any
segments that contained three or more irregular R-R in-
tervals were excluded from analysis, and possible artifact
noise was replaced with the interpolated adjacent R-R
interval values (filter power < low). R-R interval markers
were measured using a window width of 256-s and over-
lap of 50% through the specialized HRV software
(Kubios V 2.2, Joensuu, Finland). The dependent vari-
ables in the time domain included the standard deviation
of normal-to-normal (SDNN) intervals and the root
mean squared of successive difference (RMSSD) of R-R
intervals [26]. Log transformed data for all time were
used in statistical analysis to avoid outliers.

Statistical analysis

The primary outcome for our study was parasympathetic
tone as measured via INRMSSD as RMSSD is a singular
index measuring parasympathetic nervous system tone.
Our secondary outcome was InSDNN, which reflects
mixed ANS modulation and is considered a global index
of HRV. We used general linear models to examine
changes from the baseline, pre-ingestion HRV assess-
ment at 45-min post-ingestion, 5-min post exercise and
45-min post exercise. Statistical analyses were performed
using general linear models. Post-hoc analyses were per-
formed using Bonferonni adjusted, paired t-tests in order
to prevent the likelihood of Type I error (SPSS® version
25, IBM North America, New York, NY, USA).
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Normality was examined using Kolmogorov-Smirnov
test and confirmed for all exercise related variables.
However, we observed that HRV indices were not nor-
mally distributed. Therefore, we performed a natural log
transformation for all HRV measures. Effect sizes are
presented as partial Eta squared (np?) for the general lin-
ear models and Cohen’s D for simple effects. All calcula-
tions were accomplished using) and the probability level for
statistical significance was pre-set at P = 0.05, while ES were
calculated using means and pooled standard deviations
(SD). Effect sizes for partial eta squared were interpreted as:
0.01, small; 0.06, medium and > .14, large [26]. Effect sizes
for Cohen’s D were interpreted as 0.20 = small, 0.50 = mod-
erate, 0.80 = large [27]. Data throughout the manuscript are
presented as mean (SD) or mean change (95% CI).

Results

We have presented the results for WAnT testing in
Table 1, inclusive of RPE and blood lactate. Further, we
have presented a schematic representation of the study
procedures in Fig. 1 and our findings for InRMSSD and
InSDNN in Fig. 2. In brief, we observed that overall, par-
ticipants generated a peak power output of 773.84 +
178.41 W, a mean power of 502.96 + 86.46, achieved a
maximum exercise heart rate of 155.04 + 7.36 b/min™ %, a
maximal RPE of 16.37 + 1.68, a maximal blood lactate
level of 4.80 + 0.65 mmol/L at peak exercise and 5-min
post exercise 8.26 +1.08). Between group comparisons
showed a significantly greater peak power output (157
W, 95% CI, 10.17, 304.42, p = 0.03), maximal HR (7.45
b/min~ %, 95% CI, 1.46, 13.44, p =0.007). Both the CAF3
(- 1.80, 95% CI, -3.05, —0.55, p=0.001) and CAF6 (-
2.25, 95% CI, - 3.60, — 1.10, p < 0.001) exhibited a lower
maximal RPE vs. CON and PLA. No significant between
group differences were observed for mean power, mini-
mum power or fatigue index.

Primary outcome: INRMSSD

We observed a significant trend for changes in InRMSSD
(Fig. 2a) and InSDNN (Fig. 2b), from baseline, following
treatment ingestion (both, p= 0.001, np>=0.745). For
InRSSD, significant treatment effects were observed 45-
min following ingestion (p < 0.009, np® = 0.140) and 35-
min post exercise (p=0.014, np>=0.129). While all
groups demonstrated a significant reduction in 5-min
InRMSSD vs. baseline (all, p <0.001); no significant be-
tween group (i.e., treatment) were observed at this time
(p = 0.809, np” = 0.013). Specific between group compari-
sons findings demonstrated that the CAF3 and CAF6
treatments increased INRMSSD significantly 45-min after
treatment ingestion (both, p < 0.001) both CAF treat-
ments to be significant vs. CON (p < 0.004). Thirty-five
minutes after the completion exercise, both CAF3 and
CAF®6 treatments demonstrated a return of InRMSSD to
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Table 1 Wingate test characteristics for the study participants (N = 20)
All CON PLA CAF3 CAF6 Sign. np®  Effect
Mean  SD Mean SD Mean SD Mean SD Mean SD Level
Peak Power (W) 77381 17841 69393b 159.16 749.80ab 17455 800.30ab 17404 851.22ab 17858 0032  0.109 Medium
Mean Power (W) 50296 8646 47321a 7984 501.11a  91.11  510.14a 7867 52736a 9276  0.252 0.052  Small
Min Power (W) 27923 7320 294192 6604 26239 9379 284252 6418 27609a 6655 0575 0026 Small
Fatigue Index 6202 1292 55.70a 1267 63.02a 1553  63.02a 1095 66.34a 1043 0.061 0.092 Medium
Max Heart Rate (b/min) 15550 7.59 15130, 5.39 154.60, 8.06 155.50p 7.59 15875, 6.65 0.013 0.131  Medium
RPE Warm Up 9.36 103 900, 080 930, 073 900, 135 9.00a 080 0104 0077 Small
RPE Maximal Exercise 1637  1.68 17.70a 1.30 16.55a 1.79 15.90a 1.34 15.35a 1.34 <0001 0275 Large
Blood Lactate
Pre-Ingestion 1.19 0.1 1.19a 0.1 1.20a 0.1 1.17a 0.08 1.20a 0.09 0.725 0.017  Small
45-Min Post Ingestion 1.22 0.11 1.21a 0.13 1.18a 0.06 1.25a 0.09 122a 0.12 0.291 0.048 Small
Maximal Exercise 48 0.65 4.80a 067  4.90a 069  458a 048 494a 0.74 0.291 0.048 Small
5-min Post Exercise 826 108  818c 077  863bc 097  7.13a 084  9.10b 056 <0001 0469 Large
35-Min Post Exercise 293 043 286ab 050 2.77b 032 2.90a,b 035 3.19a 045 0.013 0.131 Medium

Values in the same row and sub-table not sharing the same subscript are significantly different at p < 0.05 in the two-sided test of equality for column means.
Tests are adjusted for all pairwise comparisons within each row using a Bonferroni correction

values not significantly different to baseline, while the
CON and PLA treatments remained significantly de-
pressed (both, p <0.001). For this latter assessment, the
CAF3 treatment was significantly higher than CON (p <
0.004) and PLA (p <0.011) treatments (Fig. 2).

Secondary outcome: InSDNN

For InSDNN, we observed significant treatment effects
45-min post-treatment ingestion (p < 0.023, r]p2:
0.117) and 35-min post exercise performance (p=
0.017, np*=0.124), but not at 5-min post exercise
(p =0.784, np*>=0.014), BMI 23.3 (SD). Forty-five mi-
nutes following treatment ingestion and before exer-
cise testing, we observed a significant increase from
baseline for InSDNN in the CAF3 and CAF6 treat-
ment conditions (both, p <0.001). Both the CAF3 and
CAF6 treatments were significant vs. the CON treat-
ment (p< 0.004). Following WANT testing, we ob-
served a significant reduction in InSDNN for all
treatments after 5-min of recovery compared to base-
line, pre-ingestion (all, p < 0.001). After 35-min of ex-
ercise, we observed a continued reduction in InSDNN
for the CON and PLA treatments (both, p < 0.001);
however, no significant reductions in InSDNN vs.
baseline, pre-ingestion were noted for the CAF3 and
CAF6 treatments. For this latter assessment, InNSDNN
was significantly greater for the CAF3 and CAF6
treatments vs. PLA (p< 0.003). In summary, the HRV
indices measured in this study returned to baseline
conditions for both caffeine treatments, while the
same indices remain reduced compared to baseline
following a single bout of strenuous exercise.

Discussion

The primary objective of this study was to analyze the
effects of different caffeine dosages on resting and post-
exercise cardiac autonomic modulation. While higher
cardiac parasympathetic and global modulations were
observed after CAF3 and CAF6 ingestion during the
resting condition, no such effects were noted for the
PLA and CON groups. Further, while all treatment
groups demonstrated a significant reduction in InRMSSD
and InSDNN 5-min following exercise, no between treat-
ment effects were noted. Finally, given the continual HRV
suppression for the PLA and CON groups at 35-min post-
exercise, compared to the restoration of said indices for
the CAF3 and CAF6 treatments to levels not significantly
different from baseline, we conclude that the CAF inges-
tion in the quantities used in this study are sufficient to
accelerates post-exercise autonomic recovery following a
single bout of strenuous exercise. Based on these observa-
tions we accept our research hypothesis.

The effects of caffeine ingestion on resting HRV are
conflicting, with studies reporting increases [28—30], re-
duction [31] and no changes [32] of resting parasympa-
thetic and/or global modulation markers. Establishing a
cause of these divergences is not an easy task since sev-
eral variables can affect HRV analysis, such as sex [33],
body position [34], body mass index [35], nutritional sta-
tus [36], functional condition [37], corresponding heart
rate [38], cardiorespiratory fitness [39] and age [40]. In
that same sense, the physiological and functional re-
sponse to caffeine ingestion also depends on various fac-
tors such as individual caffeine habituation [41], caffeine
dosage [42], sex [43], functional condition adopted to
analysis [32], genetic profile [44], caffeine expectancies
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[45] and some other neuromuscular characteristics [46].
Thus, it is plausible to infer that the autonomic response
to caffeine ingestion is dependent on several independ-
ent variables, and the increase of cardiac parasympa-
thetic and global modulations observed in this study
may be limited to our study design and participants’
characteristics.

Regarding the caffeine dosage effect, no differences be-
tween CAF3 and CAF6 on resting autonomic dynamics

were observed by this study. Previous studies showed that
both 2 [28] and 5 mg-kg™ 1 130] of caffeine, dosage close to
those adopted in this study, were able to increase cardiac
parasympathetic modulation. In this scenario, our results
reinforce the possibility of increasing parasympathetic
modulation after caffeine intake and add important infor-
mation suggesting that the relationship between caffeine
dosage and parasympathetic reactivity is not linear. No
changes on InRMSSD and InSDNN were observed after
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45 min of resting on PLA and CON groups, suggesting no
effect of resting time on rest cardiac autonomic modula-
tion. In opposition, a significant effect of resting time on
supine and orthostatic cardiac parasympathetic and global
modulation was previously observed after 60 min of rest-
ing in the supine position in young men [32]. In this same
scenario, Zimmermann-Viehoff et al. (2015) observed a
significant effect of resting time on HRV parameters in a
sample of young men and women from 30 to 50 min of
rest at the seated position [47] . Despite ours and
Zimmermann-Viehoff et al. (2015) studies using the
seated position to analyze HRV, some differences between
them and may explain the conflicting results observed.
These differences include the amplitude of R-R interval
segments used for HRV analysis, rest time before the nu-
tritional intervention and sample characteristics. Thus,
these data indicate that the effect of resting time on HRV
may be protocol-dependent and should be considered in
studies involving the effect of different pharmacological
and non-pharmacological interventions on HRV.

In the initial post-exercise analysis, all treatment groups
demonstrated a significant reduction in InRMSSD and
InSDNN, but no differences between treatments were
noted. However, after 35 min of passive recovery no differ-
ences between rest and post-exercise InRMSSD and
InSDNN were identified in CAF3 and CAF6 protocols,
while a persistent depression of these autonomic markers
was identified in CON and PLA groups. Thus, these re-
sults confirm our initial hypothesis (please, check it) that
caffeine intake can boosts post-exercise cardiac autonomic
recovery. Corroborating our results, Rolim et al. (2018)
observed a higher post-exercise cardiac parasympathetic
reactivation after a submaximal exercise test in young
men after caffeine uptake (3 mgkg '), despite no changes
in resting markers of cardiac autonomic modulation [32].
On the other hand, Kliszczewicz et al. (2018) underwent
ten physically active young males to Wingate anaerobic
test, and no effect of a complex containing caffeine (100
mg) + Citrus aurantium (100 mg) was observed on post-
exercise parasympathetic and sympathetic activity, despite
higher resting sympathetic activity compared to the pla-
cebo condition [17]. Otherwise, Bunsawat et al. (2014)
suggest that caffeine can promote a sympathetic over acti-
vation after maximal exercise, a hypothesis based mainly
on higher absolute heart rate and blood pressure after an
exercise test [14]. However, higher training load and max-
imum heart rate were observed in Bunsawat’s study after
caffeine intake, with no differences in heart rate recovery
at the first and the second-minute post-exercise, which
makes the caffeine-induced sympathetic over activation
hypothesis questionable. In other words, higher post-
exercise absolute heart rate and blood pressure may occur
due to a higher training load and not necessarily a direct
effect of caffeine ingestion.
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From a physiological perspective, the autonomic re-
sponse to caffeine uptake is complex and may be bilateral.
Was previously reported that caffeine ingestion could pro-
mote a significant increase in plasma levels of catechol-
amines [48, 49] and inhibits the enzymatic degradation of
cyclic adenosine monophosphate by phosphodiesterases,
which potentiates postsynaptic neurotransmission in the
sympathetic nervous system [50] On the other hand, des-
pite parasympathetic response to caffeine uptake remain
underexplored, it has been shown that caffeine can stimu-
late acetylcholine receptors and acts as an inhibitor of
acetylcholinesterase [51, 52], which explains, at least in
part, the caffeine-induced increase in parasympathetic ac-
tivity reported in our and previous studies. In addition, it
has been hypothesized that the caffeine-induced parasym-
pathetic activation may be a result of baroreflex activation
due to an increase in peripheral vascular resistance and
blood pressure resulting from antagonistic caffeine effect
on adenosine receptors [32], which need to be confirmed
in future studies.

Notwithstanding a lack of difference between group
mean power observed in caffeine and placebo protocols,
higher peak power was observed in CAF3 and CAF6
compared to PLA and control reveal an ergogenic effect
of caffeine on anaerobic performance. Also, higher peak
power in CAF6 compared to CAF3 indicate that this er-
gogenic effect is dose dependent. Previously, a lack of ef-
fect and even reduction in anaerobic performance after
caffeine consumption has already been reported in the
literature [48]. However, a recent meta-analysis using
studies of good and excellent methodological quality re-
veal that caffeine intake can augment mean and peak
power output on the Wingate anaerobic test by 3 and
4%, respectively [11] . Interestingly, in our study, higher
cardiac parasympathetic reactivation after caffeine intake
was observed even in the face of higher peak power in
CAF3 and CAF6 compared to control and PLA proto-
cols. This finding strengthens the favorable effect of caf-
feine on post-exercise parasympathetic reactivation since
an inverse relationship between exercise intensity and
the magnitude of parasympathetic reactivation is ex-
pected [53, 54].

While a higher fatigue index was found following
caffeine compared to control, but there were no dif-
ferences compared to placebo. Of note, examining the
effect of caffeine supplementation on repeated bouts
of Wingate tests (four 30-s Wingate tests with 4 min
of rest between each exercise) after caffeine (6
mgkg™') or placebo ingestion, Greer, McLean, and
Graham (1998) observed that caffeine ingestion had
an ergolytic effect in the latter two exercise bouts
[48]. Otherwise, it was recently reported that caffeine
supplementation (6 mg-kg™') increased the peak
power during Wingate anaerobic test and diminished



Sarshin et al. Journal of the International Society of Sports Nutrition

neuromuscular fatigue, shown by attenuation of de-
crease in countermovement jump performance after
Wingate test [55] . Thus, since increase [55, 56] and
reduction [48, 57] of different markers of exercise
tolerance after caffeine supplementation already been
reported, the recommendation of caffeine supplemen-
tation to improve recreational or athletic performance
should be made cautiously.

Despite no observed difference between RPE in caffeine
and placebo during warm-up, the main effect of treatment
and lower RPE observed after CAF6 compared to control
and PLA indicates that caffeine may reduce the exercise-
induced psychological stress. Interestingly, Duncan et al.
(2019) observed a reduction of RPE during Wingate test for
the upper-body, but not for the lower-body segment, sug-
gesting that caffeine’s effect on RPE depends on body seg-
ment exercised [58]. Despite the absence of caffeine effect
on RPE during lower-body Wingate test observed in some
studies [58-60], our findings reveal that this benefit can be
acquired with caffeine supplementation in this condition.
We note that lower RPE identified in CAF6 protocol was
accompanied by high peak power and mean power, which
reinforce the psychostimulant effect of caffeine. It is an in-
teresting approach since increases in exercise performance
without altering RPE mean a higher power output without
the increase in psychological stress per se; this positive ef-
fect should also be investigated in future studies.

As expected, an increase of BLA was observed after
WANT in all protocols indicating the vital contribution
of anaerobic metabolism to the energy requirements
during the exercise test. Despite increase [61] and main-
tenance [58] of BLA levels are commonly reported after
caffeine intake, lower BLA concentration was observed
in CAF3 compared to other protocols after five minutes
of recovery. Unfortunately, the only lactate analysis per-
formed in the initial phase of recovery does not permit
to detect the exact moment with the highest lactate con-
centration, which makes any inference about the effect
of caffeine on lactate production or clearance question-
able. In the final phase of post-exercise recovery, we ob-
served higher BLA levels in CAF6 compared to PLA, but
the absence of difference between CAF6 and control
prevents the attribution of higher blood lactate to caf-
feine supplementation. Of note, blood lactate reflects the
balance between lactate production and clearance and
the precise mechanisms that explain the small differ-
ences observed in this study is unclear and it may be just
a inter day variation of BLA response to exercise, hy-
pothesis previously reported in the literature [62, 63].

Limitations

A major strength of our study is our randomized, cross-
over design. A limitation of our study is the use of a single,
acute bout of WANT testing. Therefore, we cannot
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generalize our findings to higher exercise volume condi-
tions, such as multiple WAnNT testing, multiple sets of re-
sistance training, interval style workouts. We also cannot
generalize our findings to women. The absence of ventila-
tory, sympathetic activity, and post-exercise blood pres-
sure analysis, variables that influence HRV could also
contribute to a better physiological interpretation of our
data. We believe that a particular strength of our study
was the use of a non-supplemented CON condition in
addition an inert PLA and support this contention that a
number of between group comparisons in our study were
significant vs. the CON, but not the PLA treatments.
Lastly, we assessed cardiac parasympathetic reactiva-
tion during 35 min of recovery, which limits our con-
clusions to this time window. However, despite the
mentioned limitations, the analysis of autonomic re-
sponse to different caffeine supplementation dosages
on resting and post-exercise conditions adopted in
this study adds robust information to current scien-
tific debate about the autonomic effect of caffeine in-
gestion. The post-exercise time window adopted in
this study allow fast and slow parasympathetic reacti-
vation analysis and is within of window of opportun-
ity for sudden death in young observed 30 min after
vigorous exercise, which can be partially attributed to
post-exercise cardiac autonomic dysfunction [64] and
add clinical relevance to our results.

Conclusion

We conclude that caffeine ingestion increases resting
cardiac autonomic modulation and accelerates post-
exercise autonomic recovery after a bout of anaerobic
exercise in recreationally active young men. However, no
differences between caffeine doses (3 or 6 mgkg ') on
cardiac autonomic reactivity were observed.
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