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Background: Endurance athletes search for diet regimens that will improve performance and decrease
gastrointestinal disturbances during training and events. Although the intestine can adapt to changes in the
amount and composition of dietary inputs, the responses to the combination of endurance exercise and diet are

Methods: We evaluated small intestinal dimensions and mucosal architecture and calculated the capacities of the
entire small intestine to digest maltose and maltodextrin and absorb glucose in response to two different diet
types; a western human diet and the Daniel Fast, a vegan style diet, and with moderate intensity endurance
training or a no-exercise sedentary lifestyle for a 13 week period (n =7 per group). The influences of diet and
exercise, alone and in combination, were analyzed by analysis of variation.

Results: Rats fed the western diet gained more weight (P < 0.05) due to more fat mass (P < 0.05), with a similar
response for the sedentary compared with the exercised rats in each diet group (P < 0.05). The Daniel Fast rats had
longer and heavier intestines with deeper crypts with villi that were wider (P < 0.05), but not taller. Despite
increased energetic demands, the exercised rats had shorter and lighter intestines with shorter villi (P < 0.05). Yet,
the percentage of mucosa did not differ among groups. Total small intestinal activities for maltase and a-
glucoamylase, and capacities for glucose absorption were similar regardless of diet or exercise.

Conclusions: These findings indicate the structural responses of the small intestine to a vegan style diet are
modified by exercise, but without altering the capacities of the brush border membrane to digest and absorb

Background

Sports nutrition continues to evolve from focusing on
increasing glycogen stores to improving carbohydrate
availability and utilization during endurance training
and competition. The complex nutritional and train-
ing strategies that are used by elite marathoners [1]
are founded on how the consumption of high-
carbohydrate diets increase the availability and
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improve the oxidation of exogenous carbohydrate [2];
However, the potential involvement of intestinal adap-
tations are unknown.

Gastrointestinal problems are common among endur-
ance athletes [3] and particularly for long distance
runners [4—6]. The research priorities have been focused
on the causes of the acute gastrointestinal disturbances
that occur during training and competitive events [7] to
understand how to improve the energy and fluid supple-
ments that are consumed during activity. Less is known
about the adaptive responses of the small intestine to a
chronic regimen of a combination of training and dietary
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intake that could influence nutrient availability and the
risk of gastrointestinal problems during training and
competition [8, 9].

Despite early findings that pre-exercise diets high in
fiber can increase the risk of GI disturbances [10], there
has been interest among endurance athletes in vegan or
vegetarian diets that provide adequate nutrition to fuel
endurance exercise [11], are considered healthier, and
improve biomarkers of cardiovascular health [12]. One
vegan diet, “The Daniel Fast,” exemplifies a stringent
vegan diet that allows for ad [libitum consumption of
fruits, vegetables, legumes, whole grains, nuts, and seeds
and excludes all animal and processed food products,
sweeteners (natural and unnatural), flavorings, preserva-
tives, additives, alcohol and caffeine [12, 13]. The nutri-
ent and calorie dense “Western Diet” is high in saturated
fats, refined carbohydrates, sodium and cholesterol and
with adverse health effects [14]. The present study ex-
amined how endurance training in combination with di-
ets mimicking the Western diet and the Daniel Fast
influences the structural and functional characteristics of
the rat small intestine. The level of endurance training
used for this study can be considered as light to moder-
ate and would be relevant to individuals seeking to
increase activity levels, but is much less intense than
regimens typical of athletes preparing for competition.

Methods

Male Long-Evans rats (n =28, aged 3—-4 weeks) were
individually housed upon arrival and were allowed to ac-
climate for two weeks to experimental conditions, in-
cluding the cage, experimental diets, handling, and
protocols. All aspects of the study using animals were
done in accordance with the Guide for the Care and Use
of Laboratory Animals (8 Edition) and were approved
by the University of Memphis Animal Care and Use
Committee.

During the two week acclimation period the animals
were transitioned to the assigned diets by gradually
replacing the standard rodent chow until at conclusion
only the assigned diet was fed. The rats were placed on
the treadmill on three separate days (5 min at 20 m/
min) for familiarization. The 12:12 light—dark cycle
was gradually shifted each day so the light phase was
from 0300 to 1500.

Dietary and exercise intervention

The rats were randomly assigned to one of four interven-
tion groups; Western Diet with exercise (WDE; n=7);
Western Diet without exercise/sedentary (WDS; n=7);
Daniel Fast with exercise (DFE; n = 7); Daniel Fast without
exercise/sedentary (DFS; n=7). The Western Diet pro-
vided as percentages of energy 43 % carbohydrate, 40 %
fat, and 17 % protein (Table 1). The Daniel Fast diet had a
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Table 1 Macronutrient Content of the Western and Daniel Fast
Diets fed to the rats

Western Diet Daniel Fast
Nutrient g/kg kcal% g/kg kcal%
Protein 200 17 150 15
Carbohydrate 500 43 575 60
Fat 210° 40 109° 25
Fiber 50 0 126 0
kcal/gm
Energy 4.7 39

®Percentages of fat in the Western Diet: saturated 62.4 %, monounsaturated
30.7 %, polyunsaturated 6.9 %; 2 g/kg cholesterol

PPercentage of fat in the Daniel Fast Diet: saturated 7.4 %, monounsaturated
18.7 %, polyunsaturated 73.9 %, no cholesterol

caloric distribution of 60 % carbohydrate, 25 % fat, and
15 % protein and was formulated with different ingredi-
ents that resulted in lower proportions of saturated fats
and refined sugars (Table 2). The nutrient profiles of both
diets exceeded the energy and nutrient requirements of
rats, though the Daniel Fast was more similar to the
60:30:10 carbohydrate:fat:protein ratio for calories tradition-
ally considered to be appropriate for runners [11]. The diets
were formulated by Research Diets, Inc. (New Brunswick,
NJ) and fed as pellets. The rats were allowed constant and
unlimited access to food and water during the 13 week
intervention. Body weights were recorded weekly.

The rats in each diet group that were assigned to en-
durance training of moderate intensity were placed on a
moving treadmill three days per week. Following an
established protocol [15], the speed and duration

Table 2 Ingredients used to prepare the Western and Daniel
Fast diets fed to the rats

Ingredient Western Diet Daniel Fast
g/kg g/kg
Casein 195 0
Soy Protein 0 170
DL-Methionine 3 3
Corn Starch 50 0
Corn Starch-Hi Maize 260 0 5335
(70 % Amylose and 30 % Amylopectin)
Maltodextrin 10 100 150
Sucrose 341 0
Cellulose, BW200 50 100
Inulin 0 50
Milk Fat, Anhydrous 200 0
Corn Oil 10 0
Flaxseed Oil 0 130
Vitamins, Minerals® 51 51

%(g/kg) Ethoxyquin (0.04), Mineral Mix S1001 (35), Calcium Carbonate (4),
Vitamin Mix V1001 (10), Choline Carbonate (2); Ascorbic Acid Phosphate, 33 %
active was added to the Daniel Fast diet (0.41)
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progressively increased from 20 m/min for 15 min/day
(week 1), to 25 m/min for 30 min/day (week 2), to
25 m/min for 35 min/day (weeks 3-13). Animals
assigned to the sedentary groups were placed on a
stationary treadmill for 5 min three times each week to
account for any potential influence of handling.

Collection and analysis of samples

The rats were euthanized (CO, inhalation) at the end of
the 13 week intervention and at 72 to 96 h after the last
exercise bout to avoid acute responses to exercise and
thereby evaluate adaptive responses to the chronic diet
and exercise regimens. The entire digestive tract was re-
moved and placed in cold (4° C) mammalian Ringers.
The small intestine was isolated and after severing the
mesentery, the length was measured in a relaxed state
on a table top before being divided into three regions of
equal length; proximal, middle, and distal. Each region
was flushed with cold mammalian Ringers to remove
contents, excess fluid was removed, and weight was
recorded. Four segments were collected from the central
portion of each region for analysis. The liver, heart,
brain, and spleen were also removed and weighed.

A 3 to 4 cm segment was opened along the mesenteric
border, placed on a tared piece of aluminum, and the
mucosa was removed by gentle scraping with a glass
slide and isolated from the underlying tissue. Total tissue
mass was recorded before and after drying (60 °C for
48-72 h) and the mass of dry mucosa was recorded and
used to calculate the percentage of mucosa.

Another 5 cm segment was everted and two sections
were secured onto stainless steel rods to isolate 1 c¢cm
segments that were used for measuring carrier-mediated
glucose uptake [16]. The tissues were suspended for
2 min in Ringers with 50 mmol D-glucose that con-
tained tracer concentrations of “*C D-glucose and was
aerated with 95 % oxygen and 5 % CO, and mixed by a
stir bar rotating at ~1,200 rpm. *H L-glucose was added
to the incubation solution to correct for D-glucose that
was associated with the adherent fluid and passively
absorbed. After the incubation the tissues were removed,
placed in tared vials, weighed, solubilized (Solvable, Per-
kin Elmer, Waltham, MA), and scintillant was added
(Ultima Gold, Perkin Elmer, Waltham, MA). Tissue
accumulation of the radiotracers was measured by liquid
scintillation counting (Tri-Carb 2900TR, Perkin Elmer,
Waltham, MA) and calculated rates of carrier-mediated
glucose uptake were normalized to tissue mass (nmol
per min per mg of tissue). Rates of uptake were inte-
grated with regional mass to estimate regional glucose
uptake capacities and these values were summed to esti-
mate the total uptake capacities of the small intestine.

Another 5 cm segment was snap frozen in liquid nitro-
gen and stored at -75 °C for assays of brush border
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membrane (BBM) maltase and a-glucoamylase activities.
The frozen tissues were homogenized (Polytron; 1 g/
4 ml) in 300 MHT solution (10 mM HEPES, 10 mM
Trizma base, 300 mM D-mannitol, pH 7.5), CaCl, was
added to a final concentration of 10 mmol, the suspension
was stirred for 20 min, and the cellular debris was sedi-
mented (2,500 x g; 5 min; 4° C). The supernatant was cen-
trifuged (50,000 x g; 30 min; 4° C) and the resulting BBM
pellet was suspended in 400 MHT buffer (10 mM HEPES,
10 mM Trizma base, 400 mM D-mannitol, pH 7.5). The
activities of maltase and a-glucoamylase were based on
the amount of glucose released in 60 min at 37° C [17]
when the BBM were added to solutions containing 0.056
maltose and a maltodextrin with an average degree of
polymerization of 5. The units of activity (1 U =1 umol of
glucose released per minute) were normalized to protein
(U/mg BBM protein; specific activity) and also integrated
with regional mass to estimate total units per region and
these values were summed to estimate total small intes-
tinal BBM activities for maltase and «a-glucoamylase.

The fourth segment was fixed in 10 % neutral buffered
formalin, processed into paraffin, sectioned (5 um), and
stained with hematoxylin and eosin for measurement of
villus height and width and crypt depth.

Analysis of data

All data are reported as means + SEM. One-way analysis
of variance (ANOVA) was used to search for treatment
effects, followed by Tukeys post hoc test to identify
specific differences among mean values. Data that were
not normally distributed were tested by the nonpara-
metric Kruskal Wallis and the Mann—Whitney U tests.
P values < 0.05 were considered statistically significant;
whereas P values between 0.05 and 0.10 were consid-
ered as tendencies that might become significant with
larger sample sizes.

Results

A total of 27 animals completed all aspects of this study.
One rat in the WDE group died during week two of the
intervention, approximately 30 min after an exercise
session. The necropsy revealed the abdomen was filled
with blood, with the likely cause of death a suspected
aneurism. All other animals successfully completed the
13 week intervention.

Body and organ weights

All of the surviving rats gained weight during the
13 week study (Table 3). After 13 weeks, the two groups
of WD rats (pooled data for WDE and WDS) weighed
more than the corresponding two groups of DF rats, and
significantly so for the WDS rats (Fig. 1). Exercised rats
(pooled data for DFE and WDE) were not significantly
smaller than the two groups of sedentary rats (Fig. 1).
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Table 3 Initial and final body weights (g), final body composition, and weights (g) of selected organs (means and SEM) of the rats

assigned to the four treatment groups

Daniel Fast Exercise  Daniel Fast Sedentary

Western Diet Exercise

Western diet Sedentary P for Group Comparisons

Initial Body Mass 193+3 1856
Final Body Mass 519+8° 515 +24°
Final Fat Mass (qg) 101 +7° 124 +10°
Final Lean Mass () 391+9 376+8
Final % Fat 203137 246+ 147
Liver 17.2+04° 169+1.1°
Heart 146 +0.04 1.31+0.08
Spleen 0.75+0.03 0.81+£0.03
Brain 220+ 0.04 212+004

186+ 3 187+4
555 +22° 604+ 23° <0.0001
162+ 8° 195 + 8° <0.0001
366+ 9 387+7

306+13° 335+£10° <0.0001
245+23° 271 +2.7° <0.0001
142+009 160+ 006

0.75+0.05 087 +003

2.16+003 2134004

Values in a row with different letter superscripts are significantly different (P < 0.05)

The WDS rats gained the most weight, including com-
pared with WDE rats (P < 0.05); whereas the DFS and
DFE rats had similar weights (P = 0.9).

The WD rats had livers that were heavier (25.9 £ 2.0 vs
17.1£0.6; P =0.0002), and particularly when normalized
to body weight (44 + 1.8 vs 32.9 £ 0.5; P < 0.0001). Exercise
did not influence liver weight, for pooled data (E =20.2 +
1.5 vs S=21.6 £ 1.0; P = 0.60), within each diet group, and
when liver weight was normalized to body weight (P =
0.83 for pooled data). Although absolute heart weight
tended to be higher for the two groups of DF rats (1.52 +
0.06 vs 1.38 + 0.05; P = 0.09), there was no difference when
heart weight was normalized to body weight (P =0.44).
Exercised rats did not have larger hearts when data for
each diet are pooled (1.44 +0.05 vs 1.46 + 0.06; P =0.84)
or when normalized to body weight (P=0.31). How-
ever, DFE rats had hearts that were larger when nor-
malized to body weight (1.46 + 0.04 vs 1.31+0.08; P =
0.03). Heart weight normalized to body weight for the
WD rats did not differ between exercised and seden-
tary rats (P=0.39). Brain weights did not differ
between diet and exercise groups. Spleen mass normal-
ized to body weight was higher for DF (1.52 + 0.05 vs
1.40 £ 0.04; P =0.05) rats and tended to be higher for
sedentary (1.52 + 0.04 vs 1.40 + 0.05; P = 0.07) rats.

Intestinal dimensions and histology

Responses to diet

When data for the two exercise groups (Table 4) were
pooled, the intestines of DF rats were longer compared
with WD rats (P =0.003), with the response even more
pronounced when length was normalized to body mass
(Fig. 1). Although the longer intestines of DF rats did
not result in the absolute mass of intestine being heav-
ier (P =0.13), the small intestines of the DF rats repre-
sented a greater proportion of body mass (Fig. 1). The
higher g/kg for DF compared with WD rats extended
to the three regions of small intestine (proximal: 5.8 g/

kg+0.2 vs 4.7+0.2; mid: 5.1+0.2 vs 4.5+0.3; distal:
44+0.2 vs 3.3+0.3), significantly so for the proximal
(P =0.002) and distal (P = 0.007) regions.

The percentage of mucosa and mucosal mass did not
differ between DF and WD rats in any of the three
regions (data not presented). Yet, because of greater in-
testinal mass per kg body weight, the DF rats had more
mucosal mass per kg body weight than WD rats (11.90
+0.38 vs 10.29 + 0.67; P =0.05), which was due mostly
to the difference in the proximal region (4.54 g/kg + 0.14
vs 3.76 £ 0.27; P =0.01).

Differences in tissue architecture were detected among
regions and diet groups (Table 4). Villus height declined
from proximal to distal in DF rats; whereas the tallest
villi in WD rats were measured in the middle region. As
a consequence Vvilli for DF rats were taller in the prox-
imal region (610 pm+18 vs 437 +£26; P<0.0001),
shorter in the middle region (502 + 18 vs 561 + 18; P =
0.02), with similar heights for DF and WD rats in the
distal region (350 £9 vs 335+ 8; P =0.25). Villus widths
for DF and WD rats were similar in the proximal and distal
regions (Ps = 0.41 and 0.64, respectively), but were narrower
for DF rats in the middle region (136 +5 vs 157 +6; P=
0.004). Crypt depth was lower in the proximal region of
WD rats (114 pm + 6 vs 152 + 4; P < 0.0001), without differ-
ences in the middle and distal regions (Ps = 0.86 and 0.73).

Responses to exercise

When both diet groups were pooled, exercised rats had
shorter intestines compared with sedentary rats (118 cm
+3 vs 125+ 2; P=0.02). However, there was no influ-
ence of exercise when length was normalized to body
mass to account for the sedentary rats being larger
(Fig. 1). Similarly, the small intestines of the larger WDS
rats were longer compared with WDE rats (p =0.03),
but not when normalized to body mass (WDS =
204 cm/kg+9 vs WDE 207 +7; P=0.83). Intestinal
length of DFE and DEFS rats did not differ whether
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comparisons of pooled data for diets and exercise are presented

Fig. 1 Body weights and intestinal lengths and weights normalized to body weight for rats fed the Daniel Fast (DF) and Western (WD) diets
and rats either exercised (E) or sedentary (S) and for the four combinations of diet and exercise (DFE, DFS, WDE, WDS). The specific groups are
represented by different bars as indicated in the panel. Individual groups with different letters are significantly different (P < 0.05) and P values for

DFE
DFS
WDE
WDS
DF
WD

S
N

0.0003

0.46

1

expressed as cm (P =0.14) or normalized to body mass
(DFS =252+ 9 vs DFE =234 + 8; P =0.14).

Even though regional and total intestinal weights
tended to be lower for exercised rats, none of the com-
parisons were significant. The lack of differences was
even more apparent when regional and total weights
were normalized to body mass (all P> 0.35; Fig. 1). Simi-
larly, the percentages and the mass of mucosa in the
three regions and for the entire small intestine did not
differ between exercised and sedentary rats (all P > 0.48).

When all regions were pooled, exercise was associ-
ated with shorter villi (E=466 pm+ 17 vs S=500 + 17;
P =0.02), but due solely to the differences in the middle
region (577 +14 vs 490+ 21; P=0.004); heights were
similar for E and S rats in the proximal (P =0.58) and
distal regions (P =0.18). Crypt depths showed the same
regional responses to exercise, being shallower in the
middle region of E rats (134+3 vs 146 £4; P=0.01)
and similar to S rats in the proximal (P + 0.31) and dis-
tal regions (P=0.31). Villus widths for E rats were
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Table 4 Intestinal dimensions and histological features (means and SEM) of the rats assigned to the four treatment groups

Daniel Fast Exercise

Daniel Fast Sedentary ~ Western Diet Exercise

Western diet Sedentary

P for Group Comparisons

Intestinal Length (cm) 12114 129+3
Intestinal Mass (g)
Proximal 285+0.18 3.19+0.21
Mid 264+£0.17 265+0.18
Distal 217£0.16 239+0.21
Total 7674028 8244055
Crypt Depth
Proximal 158+5 147 +6
Mid 137+4 143£5
Distal 159+7 143+6
Villus Height
Proximal 592+17 625 £ 31
Mid 411 +£23 588+ 18
Distal 320+12 383+ 11
Villus Width
Proximal 133+£6 152+8
Mid 131+5 139+7
Distal 153+7 126 +5

114+2 122+3 P <0.05
261+0.26 287+0.15

238+0.27 282+0.14

1.87+0.21 1914029

6.87 £0.51 761+038 P <0.05
121+4 125+4 P <0.05
132+4 1506 P <0.05
146+ 5 1517

512+24 505+24 P<0.05
542 +28 563 + 21 P <0.05
347+13 326+12 P <0.05
140+ 5 155+6 P <0.05
1577 154+7 P <0.05
142+5 131+8 P<0.05

narrower in the proximal region (P =0.007), similar in
the middle region (P=0.87), and wider in the distal
region (P =0.003).

Influence of exercise on the responses to diet

Comparisons of DFE with DFS and WDE with WDS
groups were used to evaluate the combined influences of
diet and exercise on small intestine characteristics.
Among the DF rats, those that were exercised appeared
to have shorter intestines, whether as absolute (cm;
Table 4) or normalized (cm/kg), though a larger sample
size is needed to verify. In contrast, exercise did not alter
intestinal length among WD rats when normalized to
body mass. Similarly, exercised reduced intestinal mass
normalized to body mass for DF rats, but had no influ-
ence for WD rats. Within each diet group, exercise had
no influence on the amount and percentage of mucosa
in each region.

The responses of small intestinal histology to the com-
bined influences of diet and exercise varied among re-
gions. In the proximal region exercise caused crypt
depth to decrease among WD (P <0.001), but slightly
increase among DF (P =0.11) rats. Exercise did not alter
villus heights of the DF and WD rats (P = 0.40 and 0.86),
but in both groups caused a decrease in villus width (P =
0.07 and 0.04). The patterns of response to exercise also
differed between diet groups in t the middle segment.
Exercise again caused a decrease in crypt depth for WD
rats (P =0.01), but did not alter villus height (P =0.93) or

width (P = 0.58); whereas villus height increased in DF rats
(P =0.001), but crypt depth and villus width did not differ
between DFE and DFS rats (P=0.32 and 0.24). Histo-
logical characteristics of the distal region did not differ be-
tween WDE and WDS. In contrast, DFE rats had deeper
crypts (P =0.08) and villi that were taller (P =0.002) and
narrower (P =0.02).

Brush border membrane carbohydrases and glucose
uptake

Total small intestine maltase activity did not differ
among groups (Fig. 2). Although the WD rats, both E
and S, had higher maltase specific activity in the prox-
imal region (0.10 U/mg BBM protein+0.01 U/mg
BBM protein vs 0.07 + 0.01; P = 0.01), total small intes-
tinal maltase activity was not higher compared with
the DF rats (P=0.21; Fig. 2). Total small intestinal
maltase activities did not differ between exercised and
sedentary rats.

Specific activities for a-glucoamylase activity were
lower than for maltase and did not differ among the four
groups in any region (data not presented) or for total
small intestine a-glucoamylase activities. When exercise
and sedentary groups were pooled total small intestine
a-glucoamylase activity was not higher for WD rats
(Fig. 2) Comparisons of exercised and sedentary rats
using pooled for both diet groups did not reveal an
influence of exercise on specific and total small intestinal
activities for a-glucoamylase.
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0

the P values for comparisons of pooled data for diets and exercise

Fig. 2 Total small intestinal maltase and a-glucoamylase activities and total small intestine capacities to absorb glucose normalized to body weight for
rats fed the Daniel Fast (DF) and Western (WD) diets and rats either exercised (E) or sedentary (S) and for the four combinations of diet and exercise
(DFE, DFS, WDE, WDS). The specific groups are represented by different bars as indicated in the panel. Differences were not detected as indicated by
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Rates of carrier-mediated glucose uptake (nmol/mg-
min) did not differ in any region among the four groups,
when averaged for all three regions (P >0.3), or when re-
gional data and averages were pooled for comparisons of
diets (DF vs WD; P> 0.4) or exercise regimens (exercise
vs sedentary; P> 0.2). Total small intestine glucose uptake
capacities were also similar for all comparisons (Fig. 2).

Discussion

The increased weight gains of the WD compared with DF
rats coincided with higher percentages of body fat, not
increases in lean body mass, and less desirable plasma lipid
profiles, higher concentrations of products of lipid and pro-
tein oxidation, and higher circulating concentrations of in-
flammatory markers (unpublished data). These findings in
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conjunction with the larger livers of the WD rats (present
study) are consistent with the increased health risks associ-
ated with chronic consumption of the Western human diet.
Importantly, even though exercise can diminish the weight
gain associated with the WD, it does not resolve the adverse
health risks associated with chronic consumption of the
WD and resulted in a diminished performance response of
the WDE rats after the 13 week period of training com-
pared with the DFE rats (unpublished data).

The smaller spleens of the exercised rats (E=0.75 g/
kg +0.03 vs S =0.84 + 0.02; P=0.07) corroborate reports
of immunomodulation associated with endurance train-
ing [18, 19]. However, exercise did not result in WD
animals having smaller livers or larger hearts, providing
further evidence the WD blunts the benefits of endur-
ance exercise. Brain weight was not responsive to either
diet or exercise, as expected, even though circulatory
and functional differences are possible [20].

Endurance athletes desire diets that provide adequate
energy and nutrients, elicit positive metabolic adapta-
tions of skeletal muscle, and don’t compromise gastro-
intestinal functions. The less than desirable health and
performance responses to the nutrient dense WD exem-
plifies why many endurance athletes are interested in
vegetarian style diets with ingredients that are less proc-
essed, don’t include animal products, have less saturated
fats and simple sugars, and provide higher fiber content.
The logical expectation is that such diets will elicit adap-
tive changes in the structural and functional characteris-
tics of the small intestine that will maximize the delivery
of nutrients. However, the responses of the small intes-
tine to high fiber, vegan style diets independent of the
potential influence of endurance exercise have not been
extensively studied. The limited information suggests
such diets will change intestinal dimensions [21], total
gut transit times [22] and the microbiome [23].

Although food consumption by the rats was not mea-
sured, we recognize the amounts of food and calories
consumed may have differed between rats fed the two
diets. However, consumption of the same diet may not
have differed between the exercised and sedentary rats
[24]. Hence, the differences detected among the groups
can be attributed to responses to diet, exercise, or the
combination, and represent novel findings.

Small intestine responses to diet composition

The proportionally longer and heavier small intestines of
the DF rats corroborate previous findings for rats fed
higher fiber diets [25] and are indicative of a trophic
response to the vegan style diet. Moreover, the relatively
longer and heavier small intestines of DFS compared
with WDS rats along with the differences in mucosal
architecture imply that DF results in more absorptive
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surface area per kg body weight, but without an increase
in the percentage of mucosa.

Functionally, the WDS and DEFS rats had the same
capacities per kg body mass to hydrolyze maltose and
maltodextrin and transport glucose. Even though the
levels of carbohydrate in the two diets were not dissimi-
lar (50 % vs 58 % for the WD and DF, respectively), the
two diets did differ in the amounts of digestible carbohy-
drates. The dominant carbohydrate in the DF (Corn
Starch-Hi Maize 260) is mostly resistant starch; whereas
the WD has mostly simple and highly digestible carbo-
hydrates, including the 341 g of sucrose that would
induce expression of sucrase [26], which includes malt-
ase activity, and might increase the activities of other
brush border membrane carbohydrases. Although not
measured, the resulting carbohydrates and glucose that
would be presented to the brush border membrane from
both diets may not have been markedly different.

Small intestines responses to exercise training

The acute responses of the gastrointestinal tract to endur-
ance training and during competitions have received
attention because of the complications and dysfunctions
that impact performance. Even the majority of those stud-
ies have focused on the stomach and colon because these
regions are considered at higher risk of dysfunction. The
present study addresses a general lack of understanding of
the adaptive responses the small intestine to chronic
endurance exercise, despite the importance for nutrient
delivery.

Increased metabolic demands associated with preg-
nancy, lactation, and cold exposure elicit intestinal
growth [27-30]. This led to the a priori prediction that
endurance exercise would increase energy needs and
thereby stimulate small intestine growth and increase
brush border membrane functions [31]. However, exer-
cised rats did not have larger intestines, though the
proximal region did tend to have a higher percentage of
mucosa (81 % vs 75; P =0.06). Surprisingly, the exercised
rats had shorter villi, due largely to the shorter villi in
the middle region. Hence, exercise did not elicit an obvi-
ous trophic response.

From a functional perspective, the lack of differences
between exercised and sedentary rats fed the same diet
for brush border membrane carbohydrases and glucose
uptake are consistent with similar dietary loads of sub-
strates. Apparently, exercise at the intensity imposed on
the rats does not cause intestinal adaptations that are
independent of diet.

Intestinal responses to combinations of diet composition
and exercise

Improving nutrient availability and decreasing gastro-
intestinal dysfunctions during training and competition
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are of utmost interest to endurance athletes. The present
findings represent some of the first insights into the
adaptive responses of the small intestine to the combin-
ation of diet and training. The contrasting responses of
intestine length to the vegan style diet (increase) and ex-
ercise (decrease) resulted in the DFS rats having the lon-
gest small intestines; whereas exercise had no influence
on the shorter intestines of WD rats. The contrasting re-
sponses to the combination of diet and exercise were
even more pronounced for intestine weight normalized
to body mass, again revealing a response to exercise for
the DF, but the WD rats. These responses of tissue
architecture to the combination of diet and exercise are
novel findings. Despite the different structural responses
to the combination of diet and exercise, all of the rats
maintained comparable small intestinal capacities to
hydrolyze maltose and maltodextrin and absorb the
resulting glucose.

Conclusions

These results demonstrate that the structural responses
of the rat small intestine to chronic moderate exercise
differ between two diets that are representative of the
western diet and a vegan style eating regimen. Yet, the
functional abilities of the intestine at the level of the
brush border membrane were not affected. Hence, the
intestine has the potential to reduce gut size in response
to endurance exercise without compromising carbohy-
drate digestion and absorption of glucose. The combined
responses need to be determined at higher intensities of
training which is more likely to cause gastrointestinal
dysfunctions [31]. Moreover, it is unknown if the adap-
tive responses to diet and exercise affect carbohydrate
availability and the potential for gastrointestinal distress
during competition.
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