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Abstract

Background: Previous studies reported divergent results on nutraceutical actions and free radical scavenging
capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating
season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major
ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced
oxidative stress.

Methods: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1
was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1
administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as
non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with
non-exercise rats.

Results: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced
by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by
decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these
changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were
significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless,
glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise
in Rg1 group.

Conclusions: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant
defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by
exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive
exercise-induced oxidative stress.
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Figure 1 Chemical structure of ginsenoside-Rg1.
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Introduction
Disruption in the balance between free radical pro-
duction and scavenging capability contributes to the
accumulation of oxidative damage in muscle tissues.
Under normal physiological conditions this balance
is tightly buffered by the antioxidant enzymes, which
consists of superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx), as well
as non-enzymatic antioxidant reduced glutathione
(GSH) [1,2]. Moderate exercise training has been
shown to improve this antioxidant defense system to
maintain the stable redox status against the recur-
rence of exercise-induced oxidative stress [3]. How-
ever, acute exhaustive exercise impairs the system
due to overwhelming production of reactive oxygen
species (ROS) in skeletal muscle [2]. As a result,
accumulated excessive ROS can attack the vital bio-
molecules, such as plasma membrane lipids and
proteins, and therefore deteriorates normal cellular
functions. This scenario has been well documented
by observation of elevated lipid peroxidation (malon-
dialdehyde, MDA) and protein carbonyl (PC) after
exhaustive exercise in different tissues of rat [4-6].
Preservation of cellular integrity for normal recovery
by nutraceutical products against oxidative stress
during high level sports competition represents a
market demand for athletes during competition
season.
Panax ginseng extracts have been shown to up-

regulate the antioxidant defense system and attenuate
the oxidative stress in rats [7,8]. However, nutraceutical
actions of ginseng extracts have been controversial in
many studies [9,10]. Ginsenosides, a class of steroidal
glycosides, are considered as the main bioactive compo-
nents in P. ginseng that are thought to be responsible for
the nutraceutical actions. The ginsenoside constituents
in P. ginseng can be varied by season, cultivating soil and
extraction processes [11,12]. Some ginsenosides have dif-
ferent or even opposing pharmacological actions than
others on free radical scavenging capacity [9,10]. Among
various ginsenosides (protopanaxadiols: Rb1, Rb2, Rc,
Rd and protopanaxatriols: Rg1, Re, Rf ), ginsenoside-Rg1
(Rg1) is one of the major compound in P. ginseng [13].
It is currently unknown whether prolonged pre-

administration of Rg1 can protect the skeletal muscle
against exhaustive exercise-induced oxidative stress.
Available evidences have shown that Rg1 is able to at-
tenuate oxidative damage against ischemic reperfusion
and dopamine-induced damage in rat tissues [14,15].
Thus, we hypothesized that exhaustive exercise-induced
oxidative damage in rat skeletal muscle can be pre-
vented by Rg1 pretreatment. Oxidative damage markers,
enzymatic and non-enzymatic antioxidant defense system
were determined in rat skeletal muscle.
Methods
Animal care and maintenance
Forty male Sprague Dawley (SD) rats, weighting
410 ± 10 g (4-month old) were obtained from the
LASCO (Taipei, Taiwan) and used for this study. All the
animals were housed under temperature (22 ± 2°C) and
relative humidity (55%) controlled room with 12/12 h
light/dark cycle. Two rats in each cage were maintained.
All rats were fed standard laboratory chow (PMI Nutri-
tion International, Brentwood, MO, USA) and water
ad libitum. This study was approved by the Animal Care
and Use Committee of Taipei Physical Education Col-
lege, and conformed to the Guidelines for the Use of
Research Animals published by the Council of Agricul-
ture, Executive Yuan, Taiwan.

Plant extract and chemicals
Ginsenodie-Rg1 (Rg1, molecular weight 801.01, Figure 1)
was obtained from the NuLiv Science USA, Inc, Walnut,
CA, USA. All the other chemicals used in this study were
obtained from Sigma Chemicals (St. Louis, MO, USA)
and Cayman Chemical Company (Ann Arbor, MI, USA).

Grouping and treatment
Weight matched rats were equally divided into control
(N= 20) and Rg1 (N= 20) groups. Rg1 was dissolved in
0.9% saline, and administered to Rg1 group daily at the
dose of 0.1 mg/kg body weight (b.w) by gastric gavage
for 10 weeks. Similarly, control group rats received the
same amount of saline for the same duration.

Exercise protocol
In this study, rats performed swimming until exhaustion
in a water pool. The water temperature was maintained
at 33 ± 1°C. Three days prior to acute exhaustive
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swimming challenge, all animals were familiarized with
swimming environment for 10 min/day. Then, half num-
ber of rats (N= 10) from each group were performed an
exhaustive swimming with a lead ingot (3% body weight)
loaded to the tail of each rat. Rats were swimming until
exhaustion and clearly monitored to avoid sink in the
pool. The swimming duration was not significantly dif-
ferent between control and Rg1 groups.

Tissue collection
Immediately after exhaustive exercise, rats were anesthe-
tized with chloral hydrate injection (400 mg/kg b.w.,
intraperitoneally). The tibialis anterior (TA) muscle from
the hind limbs of exercised and non-exercised rats were
quickly excised and frozen into liquid nitrogen, and then
stored at −80°C until biochemical analyses. 100 mg of
muscle tissue was homogenized in 1 mL of Tris buffer
(50 mM, pH 7.5) and centrifuged at 10000 g for 10 min
at 4°C. Collected supernatant was used for the estima-
tion of protein carbonyl (PC) and glutathione levels. The
same supernatant was also used to measure the activities
of catalase (CAT), glutathione peroxidase (GPx), gluta-
thione reductase (GR), glutathione S-transferase (GST)
and xanthine oxidase (XO).

Determination of lipid and protein oxidation
Lipid peroxidation marker malondialdehyde (MDA) in
muscle samples was measured spectrophotometrically as
described by Ohkawa et al. [16]. Muscle tissue was
homogenized in phosphate buffer (50 mM, pH 7.0) and
centrifuged at 10000 g for 10 min at 4°C. This assay is
based on the MDA-TBA (thiobarbituric acid) compound
formed by the reaction between MDA and TBA at high
temperature (90-100°C). The MDA-TBA was quantified
at 450 nm by spectrophotometer.
Protein oxidation in the muscle samples was deter-

mined by measuring the protein carbonyl residues by
using the DNPH (2,4-dinitrophenylhydrazine). Accord-
ing to the protocol provided by Cayman’s protein
carbonyl assay kit (Cayman Chemical Company, Ann
Arbor, MI, USA), the amount of protein-hydrozone
product was quantified spectrophotometrically at wave-
length of 360 nm (Tecan Genios, A-5082, Austria).

Measurement of reduced and oxidized glutathione levels
Glutathione assay kit (Cayman Chemical Company, Ann
Arbor, MI, USA) was used to measure the reduced
glutathione (GSH) and oxidized glutathione (GSSG)
levels in muscle. The reaction between GSH and DTNB
(5,50-dithio-bis-2- nitrobenzoic acid) results a colored
product TNB (5-thio-2-nitrobenzoic acid). The absorb-
ance of TNB was measured at 405 nm by ELISA plate
reader (Tecan Genios, A-5082, Austria).
Assessment of antioxidant enzyme activities
For determination of superoxide dismutase (SOD) activ-
ity, muscle samples were homogenated in 20 mM
HEPES buffer (pH 7.2) containing 1 mM EGTA,
210 mM mannitol, and 70 mM sucrose. The principle of
SOD assay is based on the ability of SOD to reduce
superoxide radicals (O2

•─−) generated by xanthine oxi-
dase (XO). The absorbance of the sample was read at
450 nm using ELISA plate reader (Tecan Genios, A-
5082, Austria). SOD activity was expressed as U/mg pro-
tein. Catalase (CAT) activity was measured by adding
the hydrogen peroxide (H2O2) to the samples and ab-
sorbance was read at 540 nm using ELISA plate reader
(Tecan Genios, A-5082, Austria). Catalase activity was
expressed as nano mole formaldehyde/min/ mg protein.
Both glutathione peroxidase (GPx) and glutathione re-

ductase (GR) enzyme activities were measured in accord-
ance with the protocols supplied by the manufacturer.
The decreased in the absorbance of oxidation of NADPH
was measured at 340 nm once every minute to obtain at
least 5 time points using a plate reader (Tecan Genios,
A-5082, Austria). The kits from Cayman Chemical Com-
pany (Ann Arbor, MI, USA) were used to determinate all
these antioxidant enzymes. Enzyme activities were calcu-
lated per mg protein.

Measurement of xanthine oxidase activity
As a source of free radical production, xanthine oxidase
(XO) activity was assayed based on the H2O2 production
during oxidation of hypoxanthine. This assay was per-
formed by the protocol provided by Cayman Chemical
Company (Ann Arbor, MI, USA). Briefly, H2O2 reacts
with ADPH (10-acetyl-3, 7-dihydroxyphenoxazine) in
presence of HRP (horseradish peroxidase) to produce
resourfin, a highly fluorescent compound, which was
analyzed at 535 nm (excitation) and 585 nm (emis-
sion) using ELISA plate reader (Tecan Genios, A-5082,
Austria). XO activity was expressed as mU/mg protein.
Muscle protein concentrations were determined by the

Bio-Rad protein assay reagent (BioRad Laboratories,
Hercules, CA, USA).

Statistical analyses
SPSS (version 17.0) was used to analyze the data. All the
values were shown as mean ± standard error (SE) for
ten replicates. One-way analysis of variance (ANOVA)
with Duncan post hoc test was used to evaluate the
significant differences between both groups. P value was
set at 0.05 and considered statistically significant.

Results
Exhaustive exercise-induced lipid peroxidation and
protein oxidation in muscle tissues were estimated by
measuring the levels of MDA and PC, respectively.



Figure 3 Effect of Rg1 administration on muscle PC levels in
exhaustive exercised rats.
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Exhaustive swimming significantly (p <0.05) increased the
MDA levels in control group, which indicates increased
sacrolemma lipid peroxidation in muscle tissue. Exercise-
induced elevation in MDA levels were significantly
(p <0.05) attenuated in Rg1 group (Figure 2). However,
no significant change in muscle protein carbonyl levels
was noticed either by exhaustive exercise or by Rg1 treat-
ment (Figure 3).
The changes in GSH content and GSH/GSSG ratio are

shown in Figure 4A and 4B. Skeletal muscle GSH con-
tent was drastically (p <0.05) decreased after exhaustive
exercise in control group. However, this decrease was
not found in Rg1 pretreated exercised rats. Similarly,
GSH/GSSG ratio was also decreased after exercise in
control group. The loss in GSH/GSSG ratio was rescued
in Rg1 pretreated exercised rats, and this was signifi-
cantly higher compared to control exercised rats.
Exhaustive exercise marginally (p <0.07) decreased

SOD activity in control group (Figure 5), but this de-
crease was not significant in Rg1 group. In contrast to
SOD results, CAT was increased significantly (p <0.05)
after exhaustive exercise in control group compared to
non-exercise rats (Figure 6). Rg1 treatment also increased
CAT activity in non-exercise rats, while, no effect of Rg1
after exhaustive exercise.
Exhaustive exercise significantly (p <0.05) increased

the GPx activity in control group, but no change in Rg1
group (Figure 7A). Nevertheless, Rg1 alone increased
the GPx activity in non-exercise rats. In contrast to GPx
response, GR activity was not influenced by exhaustive
exercise in control group, but increased in Rg1 group
after exercise. This increase was statistically significant
compared to control exercise rats (Figure 7B). Similar
with GR, GST activity was also not influenced by
Figure 2 Effect of Rg1 administration on muscle MDA levels in
exhaustive exercised rats. * indicates significant difference against
control non-exercise group. # indicates significant difference against
control exercise group.
exercise in control group, but increased after exercise in
Rg1 group compared to control group (Figure 7C).
XO activity was shown in Figure 8. Muscle XO activity

increased after exercise was not statistically significant
(p =0.24).

Discussion
The major finding of the study is that long-term oral
Rg1 supplementation can strengthen antioxidant defense
capability in skeletal muscle and attenuate the oxidative
damage induced by an acute bout of exhaustive exercise.
In particular, exhaustive exercise-induced membrane
lipid peroxidation was effectively eliminated in the skel-
etal muscle of rats, which pre-treated with Rg1. In line
with this finding, decreased GSH/GSSG ratio after
exercise was prevented in the Rg1 group. These results
provide compelling evidence that oral Rg1 supplementa-
tion can protect sarcolemma against exercise-induced
oxidative stress by enhancing antioxidant system of
skeletal muscle.
Minimizing of unwanted side reactions like lipid

peroxidation and protein oxidation is essential in pre-
serving normal function of cells, since all chemical reac-
tions in human cells are under strict enzymatic
regulation to conform a tightly controlled metabolic pro-
gram. These are largely relying on maintaining normal
structure of biomolecules against metabolic perturb-
ation. However, increasing physical work unavoidably
increases the production of O2

•− and hydroxyl radicals
*OH, which consequently attack the membrane lipids
and results in MDA formation [2]. Ginseng extracts has
been shown to decrease the MDA levels and muscle



Figure 6 Effect of Rg1 administration on muscle CAT activity in
exhaustive exercised rats. * indicates significant difference against
control non-exercise group. † indicates significant difference against
control non-exercise group.

Figure 4 Effect of Rg1 administration on muscle GSH levels (A)
and GSH/GSSG ratio (B) in exhaustive exercised rats. * indicates
significant difference against control non-exercise group. # indicates
significant difference against control exercise group.
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damage caused by eccentric exercise in rats [17]. As a
major component of ginsenosides, Rg1 has been found
to reduce the MDA levels in liver and brain of rats [18].
The present study adds to the current knowledge that
Rg1 may be the key ginsenoside component, which
contributes to the protective effect of ginseng against
exercise-induced lipid peroxidation in skeletal muscle.
Figure 5 Effect of Rg1 administration on muscle SOD activity in
exhaustive exercised rats.
Increased MDA levels confirm the increased of oxida-
tive stress by exhaustive exercise. However, protein car-
bonyls as an indicator of protein oxidation were not
significantly increased after exhaustive exercise. The pre-
vious reports on protein carbonyls after exercise show
mixed results. For instance, protein oxidation in human
blood was elevated after resistance exercise [19].
Another study showed that plasma MDA levels were
inversely correlated with protein carbonyls under
betamethasone-induced oxidative stress condition [20].
The possible reason for this discrepancy may be related
to the differences in experimental design and model
used. Alternatively, elevated protein degradation during
prolonged exercise may affect the level of protein oxida-
tion [21].
As per our knowledge, this is the first report to dem-

onstrate the significant effect of Rg1 on preserving
GSH/GSSG ratio, in parallel with up-regulated GR activ-
ity in the skeletal muscle of exercised rats. Preserving
GSH/GSSG ratio can happen by either increasing GSH
biosynthesis or activating GSH-recycle enzyme (GR) ac-
tivity [22]. In this study, increased GR activity in Rg1-
treated exercised rats may contribute to the preservation
of GSH/GSSG ratio. Red ginseng extract has been shown
to elevate the rate-limiting enzyme of GSH-biosynthesis
and protect the cells from oxidative cell death [23]. Fur-
thermore, pretreatment of protopanaxatriol containing
Rg1 has been reported to boost the GR activity and
maintain the stable GSH/GSSG ratio against H2O2-
induced oxidative stress in endothelial cells [24].
Therefore, Rg1 may be the active component of protopa-
naxatriol that accounts for stabilization of GSH/GSSG
ratio against various types of external challenges. Fur-
thermore, GST acts to conjugate peroxidized lipids to
GSH [22]. In our study, muscle GST activity was not
affected by exhaustive exercise, which agreed with the



Figure 7 Effect of Rg1 administration on muscle GPx (A), GR (B)
and GST (C) activities in exhaustive exercised rats. * indicates
significantly different from control non-exercise group. † indicates
significant difference against control non-exercise group. # indicates
significant difference against control exercise group.

Figure 8 Effect of Rg1 administration on muscle XO activity in
exhaustive exercised rats.
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results reported by Malaguti et al. [25]. Yet, muscle GST
activity was increased in Rg1 pre-treatment rats which
may partly contribute to the attenuated lipid peroxida-
tion after exercise.
Endogenous free radicals are removed by a set of anti-

oxidant enzymes, including SOD, CAT, and GPx. Pre-
vious studies have shown increased [26], decreased [27]
or no change [28] in SOD activity after exhaustive
exercise. Our data showed marginally decreased SOD
activity after exhaustive exercise in control group. Fur-
thermore, CAT and GPx works in decomposing the toxic
H2O2 to water and oxygen. Here, both CAT and GPx
activities showed similar response after long-term Rg1
supplementation and acute exercise. Increases in CAT
and GPx in exercised rats are noted as a compensatory
response against excessive H2O2 levels [29,30]. However,
Taysi et al. [31] reported decreased liver CAT activity
after exhaustive treadmill running. This discrepancy
might be due to tissue specific response or mode of ex-
ercise. Increased GPx activity was similar with the find-
ings by Caillaud et al. [28], who reported increased
muscle GPx activity after exercise. Ginseng saponins
have been shown to increase CAT gene expression and
protect the liver from thioacetamide-induced injury [32].
Voces et al. [33] reported improved liver antioxidant
status along with GPx activity by ginseng extracts. Rg1
supplementation also increased CAT and GPx activities
in non-exercise rats, which may explain, in part, the
enhanced antioxidant defense system by ginseng.
Conclusion
The results of the study provide strong evidence that
long-term Rg1 supplementation can effectively attenuate
the exhaustive exercise-induced increased lipid peroxida-
tion and decreased GSH/GSSG ratio in rat skeletal
muscle. The beneficial effect of Rg1 is also explained, in
part, by the steady state maintenance of antioxidant
defense system in the skeletal muscle. The finding of
the study suggests that Rg1 can be used to design nutra-
ceutical supplements aimed to preserve normal biomole-
cular structure of skeletal muscle against exhaustive
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exercise-induced oxidative stress, which might be im-
portant in preventing loss of cellular function and war-
rants quick recovery after sports competition.
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