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Expression profiles of carnosine synthesis–related
genes in mice after ingestion of carnosine or
β-alanine
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Abstract

Background: Carnosine is a dipeptide that improves exercise performance. The carnosine synthesis mechanism
through carnosine and β-alanine ingestion remains unclear. Therefore, we investigated the tissue distribution of
carnosine synthase, ATP-grasp domain-containing protein-1 (ATPGD1) mRNA, and ATPGD1 and carnosine specific
dipeptidase (CN1) gene expression profiles in mice that were given carnosine or β-alanine orally.

Methods: ddY mice (7-week-old) were randomly divided into three groups (n = 6 to 8 animals per group) and
were orally given 2 g/kg body weight of carnosine, β-alanine, or water. After 15, 30, 60, 120, 180, or 360 min of
treatment, the tissues (brain, blood, liver, kidneys, olfactory bulbs, hindleg muscles) were collected. The obtained
tissues measured the expression of ATPGD1 and CN1 genes using quantitative PCR methods.

Results: The ATPGD1 gene was expressed in muscle and to a lesser extent in brain. The expression of ATPGD1 in
the vastus lateralis muscle increased significantly at 180 min (P = 0.023) after carnosine ingestion and 60 (P = 0.023)
and 180 min (P = 0.025) after β-alanine ingestion. Moreover, the carnosine group showed a significantly increased
renal expression of the CN1 gene 60 min after ingestion (P = 0.0015).

Conclusions: The ATPGD1 gene showed high expression levels in brain and muscle. The β-alanine or carnosine
administration significantly increased ATPGD1 and CN1 expression in mice.
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Background
Carnosine (β-alanyl-L-histidine) is a dipeptide abundant
in mammalian skeletal muscles [1,2]. Various physiological
actions have been ascribed to carnosine in muscle, includ-
ing acting as an antioxidant [3], regulating Ca2+ sensitivity
[4], protecting proteins against glycation by acting as a
sacrificial peptide [5], and preventing the formation of
protein–protein cross links by reacting with protein-car-
bonyl groups [6]. Primarily, carnosine with pH buffering
capacity is widely used in the field of sports nutrition [7].
Because the dissociation exponent (pKa) of carnosine is
6.83 [8,9], it is suggested that carnosine attenuates the
reduction in blood pH by a large amount of H+ originat-
ing from the dissociation of lactic acid during strenuous
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exercise, and suppresses a loss of force [10]. At the same
time, muscle carnosine contents are positively corre-
lated with high-intensity exercise performance [11] and
fast-twitch muscle fibers [12]. Increase of muscle carno-
sine predominantly was due to the ingestion of histi-
dine-containing dipeptide (HCD) such as carnosine,
anserine (β-alanyl-1-methylhistidine) and balenine (β-ala-
nyl-3-methylhistidine) or β-alanine. Although β-alanine
could also be synthesized from the degradation of uracil,
there are no reports on the relation between carnosine
synthesis and pyrimidine catabolism. So, the majority of
the previous research relating to the ergogenic effects of
elevated muscle carnosine content via chicken breast ex-
tract, high in HCD content or β-alanine supplementa-
tion was performed using mice, horses and humans [13-
17].
However, ingested carnosine is rapidly degraded by two

forms of carnosinase (CN1, EC 3.4.13.20; and CN2, EC
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3.4.13.18) [18]. In humans, the CN1 gene is expressed in
liver and brain tissue, and the protein is found in serum
and brain tissue. Since the human CN1 specifically
degrades both carnosine and homocarnosine, carnosine is
absent in human blood. Whereas, CN1 in other mam-
mals such as rodents is localized in the kidney, and a
considerable amount of carnosine is contained in the
blood [19]. CN2, which is also a cytosolic non-specific
dipeptidase, does not degrade homocarnosine, and exhi-
bits a rather broad specificity towards various dipeptides.
That is, ingestion of β-alanine or carnosine that was
degraded by these carnosinases, was increased muscle
carnosine and the increase of muscle carnosine may be
involved in carnosine synthase. However, the details
were not revealed.
Recently, carnosine synthase was purified from

chicken pectoral muscle and identified as an ATP-grasp
domain-containing protein 1 (ATPGD1) [20]. It has been
reported that ATPGD1 synthesizes carnosine using ATP,
and the substrate specificity toward β-alanine (carnosine)
in the presence of ATP and L-histidine is 14-fold higher
than that of γ-aminobutyrate (homocarnosine). To verify
that ATPGD1 acts as a carnosine synthase in vivo, we
investigated the tissue distribution of ATPGD1 mRNA,
and ATPGD1 and CN1 expression profiles in response to
carnosine or β-alanine administration using quantitative
PCR analysis.
Methods
Oral administration study in mice
Animal experiments were performed in accordance with
the guidelines for Animal Experiments at Nippon Meat
Packers Inc. and using minimum number of mice that
dictated by an ethics committee ( n = 6 or 8). Male SPF-
bred ddY (6-week-old) mice were purchased from Japan
SLC, Inc. (Shizuoka, Japan). The mice were maintained
under specifically controlled environmental conditions,
namely, a 12-h light–dark cycle, a temperature of 23°C,
and a relative humidity of 50%. At 7 weeks of age, the
mice were randomly assigned by body weight into three
groups (pre-administration group, n = 8, body weight of
32.5 g; water administration group, n = 6, body weight
of 33.4 g; carnosine administration group, n = 6 or 8,
body weight of 33.2 g; β-alanine administration group,
n = 6, body weight of 34.0 g) and were orally given 2 g/kg
body weight of carnosine (Hamari Chemicals Ltd.,
Osaka, Japan), β-alanine (Wako Pure Chemical Indus-
tries, Ltd., Osaka, Japan), or water (control). After 15,
30, 60, 120, 180, or 360 min of treatment, the mice
were anesthetized with Forane (Abbott Japan Co. Ltd.,
Japan) and then the brain, blood, liver, kidneys, olfac-
tory bulbs, soleus muscles and vastus lateralis muscles
were collected. The collected tissues were weighed,
rapidly frozen with liquid nitrogen, and stored at −80°C
until analysis.
Extraction of total RNA
The frozen tissue samples were homogenized in 0.75 ml
of Isogen (Nippon Gene Co. Ltd., Tokyo, Japan) and
then mixed thoroughly with 0.15 ml of chloroform. The
mixture was centrifuged (20,000 × g for 5 min), and then
the aqueous phases were collected, and 0.4 ml of isopro-
panol was added. The precipitated total RNA was recov-
ered and washed with 70% (v/v) ethanol. The purity and
concentration of the total RNA thus obtained were con-
firmed using an Experion electrophoresis system (Bio-Rad
Laboratories, Inc., California, USA) and a NanoDrop 1000
spectrophotometer (Thermo Fisher Scientific K. K., Mas-
sachusetts, USA).
Construction of gene specific primers
Gene specific primers were designed by using Primer-
BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).
The primers used were as follows: for ATPGD1
(NM_134148), forward primer, 5′-CCCTGGCCTTCGACC
TCTCTCCAT-3′ and reverse primer, 5′-CGGCACTGG
GGCCCATCCTTC-3′ to yield a 164-bp product; for CN1
(NM_177450), forward primer, 5′-TGGTGGCATCCT-
CAACGAACCA-3′ and reverse primer, 5′-TCCAGGAAT-
TAGGATGTGGCCTGA-3′ to yield an 88-bp product;
for β-actin (NM_007393), forward primer, 5′-ATGAGCTG
CCTGACGGCCAGGTCATC-3′ and reverse primer, 5′-
TGGTACCACCAGACAGCACTGTGTTG-3′ to yield a
192-bp product.
Quantification of mRNA levels
cDNA was synthesized by using a PrimeScript RT re-
agent Kit with gDNA Eraser (Takara Bio, Inc., Shiga,
Japan). The genomic DNA in the RNAs extracted from
tissues was eliminated with gDNA Eraser, which were
then reverse-transcribed by PrimeScript RT. Each 25 μl
of the PCR reaction mix contained a 2 μl template,
0.2 μM of each primer, and 1× ROX Reference Dye II in
1× SYBR Premix Ex Taq II (Takara Bio, Inc.). The reac-
tion was performed at 95°C for 30 s; this was followed
by 40 cycles at 95°C for 5 s and at 60°C for 20 s. The
fluorescence was measured at the end of the extension
step in each cycle. Following cycling, a melt curve ana-
lysis was performed after each quantitative PCR to en-
sure that a single product had been amplified per primer
set. The fold-change of the gene expression was calcu-
lated using the 2-ΔΔCt method with β-actin as an internal
control. Student’s t-test was used (P< 0.05 or P< 0.01)
to test statistical significance.
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Figure 2 Time course of carnosine concentration in blood (A),
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Detection of carnosine in muscle and blood
Vastus lateralis muscle samples were deproteinized with
1 ml of 5% (w/v) sulfosalicylic acid. The samples were
centrifuged at 20,000 × g for 5 min, and then the super-
natants were filtered with a 0.45-μm filter. Blood sam-
ples were dissolved in 1 M perchloric acid (final
concentration, 0.3 M) and centrifuged at 20,000 × g for
5 min. KOH (3 M) was added to the supernatants to
realize a final concentration of 4.25% v/v. After centrifu-
gation (20,000 × g for 5 min), the obtained supernatants
were filtered and applied to a TSKgel ODS-80Ts column
(Tosoh Co., Tokyo, Japan) equilibrated with 4% (v/v)
acetonitrile, 100 mM sodium 1-pentanesulfonate, and
200 mM ammonium dihydrogen phosphate (pH 2.0).
The carnosine was eluted with the same buffer, and ab-
sorbance was detected at a wavelength of 214 nm. Statis-
tical analysis was performed with Tukey-Kramer test
(P< 0.05 or P< 0.01).

Results
Tissue distribution of ATPGD1 mRNA
The localization of ATPGD1 mRNA from various tissue
samples was investigated by quantitative PCR methods.
ATPGD1 genes were detected in muscle, a few in brain,
and hardly in liver and kidney. The expression of
ATPGD1 was 10.2-fold higher in the vastus lateralis
muscle, 6.3-fold higher in the soleus muscle and 1.8-fold
higher in the brain than in the olfactory bulbs. In contrast,
the expression of ATPGD1 in the liver and kidney was
only 50% of that in the olfactory bulbs (Figure 1).

Carnosine content of blood and muscle
In mice that had ingested carnosine or β-alanine, we
measured the carnosine content of the blood and vastus
Figure 1 Tissue distribution of ATPGD1 mRNA in mice. 1; brain,
2; olfactory bulbs, 3; kidneys, 4; liver, 5; soleus muscles, and 6; vastus
lateralis muscles. β-actin gene (Actb) was used as an endogenous
control gene.

vastus lateralis muscles (B) and following ingestion of
carnosine, β-alanine, or water; 2 g/kg body weight carnosine
(closed squares), β-alanine (open triangles), or water (closed
circles) was orally administered to mice (n = 6–8). Values are
means ± SD. Significant differences after administration were
analyzed by using Tukey-Kramer test (**P< 0.01).
lateralis muscle by using an ODS-80Ts column. The car-
nosine content of the blood had significantly increased by
15 min after carnosine administration (P< 0.01); it peaked
at 30 min (1.4 ± 0.3 mM, P< 0.01) and had nearly disap-
peared by 6 h (Figure 2A). No carnosine was detected in
the blood of the groups that ingested β-alanine or water.
As shown Figure 2B, the carnosine content of the vastus
lateralis muscle was 0.47 ± 0.09 mmol/kg tissue before ad-
ministration. The carnosine level had increased signifi-
cantly 30 to 60 min after it was administered (0.71 ±
0.15 mmol/kg tissue at 30 min, P< 0.01 and 0.74 ±
0.12 mmol/kg tissue at 60 min, P< 0.01) and then grad-
ually decreased. The carnosine content of muscle in the
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group that ingested β-alanine did not increase significantly
compared with that before administration (P> 0.05).
Figure 4 Effect of dietary carnosine and β-alanine on the CN1
Gene expression of ATPGD1 and CN1
The expression profiles of carnosine synthesis-related
genes were measured by using quantitative PCR. The
ATPGD1 mRNA level in the vastus lateralis muscle was
significantly elevated 3 h after carnosine administration
(P = 0.023) and at 1 (P = 0.023) and 3 h (P = 0.025) after
β-alanine administration, compared with the level before
administration. Expression increased from 2.7 to 3.2 times
that before ingestion (Figure 3). After carnosine ingestion,
the CN1 expression in the kidney peaked at 1 h and was
significantly greater (3.6 times, P = 0.0015) than before in-
gestion (Figure 4).
mRNA expression in the kidneys of male mice; 2 g/kg body
weight of carnosine, β-alanine, or water was orally
administered to mice (n = 6–8). Values are means ± SD.
Significant differences after administration were analyzed by using
Student’s t-test (**P< 0.01).
Discussion
Carnosine synthase have been tried to purify from various
sources [21-24] and Drozak et al. purified carnosine syn-
thase from chicken pectoral muscle and the enzyme iden-
tified as ATPGD1, which is a member of the ATP-grasp
family [20]. This paper was investigated about whether
ATPGD1 involved in carnosine synthesis in mice.
Firstly, the tissue distribution of the ATPGD1 gene was

investigated. The ATPGD1 gene was expressed more in
brain and muscle than in olfactory bulbs, liver and kidney
and particularly in the vastus lateralis muscle. The expres-
sion of the ATPGD1 gene was 1.6-fold higher than that in
the soleus muscle. The carnosine content in the vastus
lateralis muscle (0.47 mmol/kg tissue) was higher than in
the soleus muscle (0.35 mmol/kg tissue, P = 0.007, data
not shown), indicating that the ATPGD1 mRNA level
depends on the carnosine content.
Figure 3 Effect of dietary carnosine and β-alanine on ATPGD1
mRNA expression in the vastus lateralis muscle of male mice;
2 g/kg body weight of carnosine, β-alanine, or water was orally
administered to mice (n = 6–8). Values are means ± SD.
Significant differences after administration were analyzed by using
Student’s t-test (* P< 0.05).
Secondly, we investigated the carnosine content and
the expression of carnosine synthesis-related genes after
the ingestion of carnosine or β-alanine. The carnosine
supplementation group increased the carnosine content
in blood and muscle and the expression of CN1 in the
kidneys. Carnosine was injected into the tail vein of pro-
ton-coupled oligopeptide transporter PEPT2 knockout
mice and the kidney/plasma concentration ratio of carno-
sine in the PEPT2 null mice was one-sixth that in wild-
type [25]. Thus, it was considered that the ingested car-
nosine was eliminated from the serum by filtration into
the urine and reabsorption into the kidney, and the
reabsorbed carnosine increased the expression of CN1
in the kidney and would be hydrolyzed to β-alanine.
Carnosine and β-alanine administration increased the
ATPGD1 gene levels in the vastus lateralis muscles.
This suggests that the hydrolyzed β-alanine in kidney
increased ATPGD1 gene expression. Recently, Baguet
et al. investigated the expression of ATPGD1 mRNA in
human skeletal muscle. Twenty omnivorous subjects were
randomly divided into a vegetarian and a mixed diet
group, and took part in a five-week sprint training inter-
vention (2–3 times per week). The ATPGD1 mRNA ex-
pression in the vegetarian diet group was decreased to
60 % (P = 0.023) by five weeks of sprint training [26]. This
is consistent with our result showing that β-alanine is an
important factor in ATPGD1 expression.
Chronic chicken breast extract or β-alanine supplemen-

tation leads to improved performance in high-intensity
exercise [27,28]. However, the loading of carnosine takes
at least several weeks [29], in contrast to the initial load-
ing phase of one week for creatine [30]. This paper sug-
gests that ATPGD1 acts as a carnosine synthase in mice,
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and provides new insights to determine efficient muscle
carnosine loading.
Conclusions
The present study shows that the ATPGD1 mRNA in
mice was expressed highly in brain and muscle, moder-
ately in olfactory bulbs, scarcely in liver and kidneys, and
approximately 67 mg of β-alanine or carnosine adminis-
tration in mice significantly increased ATPGD1 and CN1
expression.
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