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A seven day running training period increases
basal urinary hepcidin levels as compared to
cycling
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Abstract

Background: This investigation compared the effects of an extended period of weight-bearing (running) vs.
non-weight-bearing (cycling) exercise on hepcidin production and its implications for iron status.

Methods: Ten active males performed two separate exercise training blocks with either running (RTB) or cycling
(CTB) as the exercise mode. Each block consisted of five training sessions (Day 1, 2, 4, 5, 6) performed over a seven
day period that were matched for exercise intensity. Basal venous blood samples were obtained on Day 1 (D1), and
on Recovery Days 3 (R3) and 7 (R7) to assess iron status, while basal and 3 h post-exercise urinary hepcidin levels
were measured on D1, D2, D6, as well as R3 and R7 (basal levels only) for each condition.

Results: Basal urinary hepcidin levels were significantly elevated (p ≤ 0.05) at D2, R3 and R7 as compared to D1 in
RTB. Furthermore, 3 h post-exercise urinary hepcidin levels on D1 were also significantly higher in RTB compared
to CTB (p ≤ 0.05). In CTB, urinary hepcidin levels were not statistically different on D1 as compared to R7. Iron
parameters were not significantly different at D1 compared to R3 and R7 during both conditions.

Conclusions: These results suggest that basal hepcidin levels may increase over the course of an extended training
program, especially if a weight-bearing exercise modality is undertaken. However, despite any variations in hepcidin
production, serum iron parameters in both RTB and CTB were unaffected, possibly due to the short duration of each
training block. In comparing running to cycling, non-weight-bearing activity may require more training sessions, or
sessions of extended duration, before any significant changes in basal hepcidin levels appear. Chronic elevations in
hepcidin levels may help to explain the high incidence of iron deficiency in athletes.
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Introduction
Iron plays a number of critical roles within the body, in-
cluding oxygen (O2) transport and energy production [1].
Specific to athletes, iron status may be compromised as a
result of exercise-induced sweating, hemolysis, hematuria
and gastrointestinal bleeding (see [2] for review). Recent
work has suggested that post-exercise increases in the iron
regulatory hormone hepcidin may also alter iron meta-
bolism [3-9]. Hepcidin is a peptide hormone that plays a
key role in regulating iron metabolism. Elevated hepcidin
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levels degrade the ferroportin export channels on the
surface of macrophages and the intestinal duodenum,
resulting in a reduction in iron recycling (by macro-
phages from senescent erythrocytes) and absorption
from the intestine, respectively [10,11]. Presently, nu-
merous studies have reported that hepcidin levels peak
3 h post-exercise [3-9]. These studies have attributed
such a response to exercise-induced increases in the in-
flammatory cytokine interleukin-6 (IL-6).
To date, most studies have used running-based proto-

cols to investigate the post-exercise hepcidin response
[3-6,8,9]. Until recently, the use of alternate modalities
such as cycling remained unclear. However, Troadec
et al. [12] recently reported that a 45 min low intensity
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cycling trial (60% of heart rate reserve) did not influence
post-exercise IL-6 and hepcidin levels. Subsequently, Sim
et al. [7] reported that IL-6 and hepcidin levels were sig-
nificantly elevated in the post-exercise period after high
(interval) and low (continuous) intensity running and cyc-
ling. Of interest, serum iron was not significantly elevated
immediately after low intensity cycling, suggesting that
non-weight bearing exercise may have the potential to re-
duce the degree of exercise-induced hemolysis, similar to
the findings of Telford et al. [13]. Although these studies
have provided some insight into the benefits of using cyc-
ling as an alternate exercise modality, it remains unclear
whether such differences may improve iron status over an
extended training period.
Currently, limited studies have attempted to examine

how exercise might affect post-exercise hepcidin produc-
tion over an extended period, and what the implications
may be for iron status. Recently, Auersperger et al. [14]
reported that serum hepcidin and ferritin decreased in
athletes adopting an eight week interval running pro-
gram. In addition, McClung et al. [15] showed that nine
weeks of basic combat training (BCT) compromised nu-
merous iron parameters in female soldiers. On the con-
trary, McClung et al. [16] reported that seven days of
training (military specific exercise and ski marching)
elevated hepcidin levels without affecting iron status in
male soldiers. Of importance, the iron status of an ath-
lete may also dictate both the pre-exercise levels of hep-
cidin, and the magnitude of hepcidin response to an
acute exercise stimulus (e.g. serum ferritin <30 μg.L−1,
hepcidin suppressed) [17].
Considering that the aforementioned investigations used

mainly weight-bearing activity (that may have increased
the degree of exercise-induced hemolysis), it remains to
be investigated how accumulated bouts of weight-bearing
(running) vs. non-weight-bearing (cycling) exercise may
impact iron status over time. Additionally, previous inves-
tigations [14-16] have only measured basal hepcidin levels;
however, the acute post-exercise hepcidin response over
consecutive exercise bouts currently remains unknown.
As such, this study set out to compare the effects of a
seven day period of running vs. cycling exercise on hepci-
din production and iron status in active individuals.

Methods
Ten active males participated in this study [age = 24 ± 1 y,
body mass = 70.5 ± 3.2 kg, stature = 175.9 ± 2.6 cm, run-
ning peak oxygen uptake (VO2peak) = 58.0 ± 2.0 ml.kg−1.
min−1, cycling VO2peak = 49.7 ± 1.8 ml.kg−1.min−1]. At the
time of recruitment, participants were performing a mini-
mum of three exercise training sessions per week. The
sample size was determined via customised computer
software (GPOWER Version 2, Department of Psychology,
Bonn University, Bonn, Germany) using effect sizes (ES)
attained from similar research [3-7,18]. A sample size of 10
was recommended to yield a power of 0.90 at a significance
level of p ≤ 0.05. When recruited, all participants had a
healthy iron status (serum ferritin = 79.3 ± 15.0 μg.L−1,
transferrin saturation = 33 ± 3%), and were not taking any
iron supplements. Prior to participation, written consent
was obtained with approval granted by the Human Ethics
Committee of The University of Western Australia (RA/4/
1/5636).

Experimental overview
Participants attended the laboratory for two separate
running (RTB) and cycling (CTB) exercise training
blocks over a three week period. Each training block
lasted for seven days, consisting of five exercise training
sessions and two rest days. The training sessions were
designed to engage both the aerobic and anaerobic en-
ergy systems, and consisted of a variety of training types
(e.g. low intensity aerobic, fartlek, and intervals). Partici-
pants were assigned to RTB or CTB in a randomised,
counter-balanced order. Subsequently, in the week prior
to each training block, a familiarisation session consist-
ing of a graded exercise test (GXT) was performed on a
motorised treadmill or cycle ergometer to determine
each individual’s running and cycling VO2peak, maximum
HR (HRmax), and the corresponding velocity (vVO2peak)
or power output (pVO2peak). During each seven day
period, exercise training was performed on Day One
(D1), Two (D2), Four (D4), Five (D5) and Six (D6), while
Days Three (R3) and Seven (R7) were recovery days
(Figure 1). After completing their first training block,
participants had a seven day recovery period before they
started the subsequent condition. In addition, no manual
labour or exercise training was performed outside of the
experimental protocol, and participants were asked to
keep their physical activity levels to a minimum during
the seven days of recovery between conditions.
For the duration of both conditions, all exercise sessions

started between 0700–0800 each day, and participants
were provided with 300 ml of water to be consumed ad-
libitum. For RTB and CTB, baseline venous blood samples
were taken on three separate occasions, which included
D1, R3 and R7. Finally, urine samples were obtained on
arrival (baseline) and 3 h post-exercise on D1, D2 and D6,
as well as R3 and R7 (baseline only). All baseline venous
and urine samples were obtained between 0700 and 0800
to minimise diurnal variation.

Experimental procedures
Graded exercise test
The running GXT was conducted on a motorised tread-
mill (VR 3000, NuryTech Inc, Germany) utilising 3 min
exercise and 1 min rest periods. The initial speed was
10 km.h−1, with subsequent 1 km.h−1 increments over



Figure 1 Diagrammatic representation of the running and cycling training blocks.
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each exercise period until volitional exhaustion. The
cycle GXT was conducted in a similar fashion (3 min
exercise: 1 min rest), and performed on a calibrated
wind-braked ergometer (Evolution Pty. Ltd., Melbourne,
Australia), using customised data collection software
(Cyclemax, School of Sport Science, Exercise & Health,
The University of Western Australia). The initial work-
load was 100 W, with increments by 40 W every 3 min.
Both HR and ratings of perceived exertion (RPE) were
recorded during the final 10 s of each workload. Ex-
pired air was analysed for O2 and CO2 concentrations
(Ametek Gas Analysers, Applied Electrochemistry, SOV
S-3A/1 and COV CD-3A, Pittsburgh, PA), with the ana-
lysers calibrated pre-test and verified post-test using cer-
tified gravimetric gas mixtures (BOC Gases, Chatswood,
Australia). Ventilation was recorded every 15 s via
a turbine ventilometer (Vacumed Universal Ventilation
Table 1 Mean (±SEM) heart rate (HR) expressed as a percenta
respective graded exercise test, ratings of perceived exertion
during the running (RTB) and cycling (CTB) training blocks

Day 1 Da

RTB CTB RTB

%HRmax

84 84 89

(1) (1) (1)

RPE
12a 14 13a

(1) (0) (0)

Prescribed exercise intensity (kph or watts)
9.8 198 12.0

(0.2) (7) (0.3)
aSignificantly different to CTB on the corresponding day.
+(recovery/effort speed or power).
Meter, 17125, Ventura, CA), calibrated before, and veri-
fied after exercise using a 1 L syringe in accordance with
the manufacturer’s specifications. Peak oxygen consump-
tion was determined by summing the four highest con-
secutive 15 s VO2 values.

Exercise trials
Running training
All running sessions were conducted outdoors on a
marked ~600 m track, consisting of grass (300 m) and
bitumen road (300 m) surface. Participants were provided
with a Global Positioning System (GPS) enabled watch
(Garmin Forerunner 110, Garmin International Inc,
Kansas, USA) to assist in pace-maintenance, and strictly
adhered to the stipulated velocity for each session based
on their predetermined vVO2peak (see Table 1) attained
during the GXT (mean vVO2peak: 15.0 ± 0.3 km.h−1,
ge of the maximum HR (%HRmax) attained during each
(RPE) and the prescribed intensity for each exercise trial

y 2 Day 4 Day 5 Day 6

CTB RTB CTB RTB CTB RTB CTB

89 86 85 89 89 78 78

(2) (1) (1) (1) (1) (1) (2)

15 12a 14 14a 16 11a 12

(0) (0) (0) (0) (0) (0) (0)

243 9.0/12.0+ 182/243+ 12.8 258 9.0 182

(8) (0.2/0.3) (6/8) (0.3) (9) (0.2) (6)
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see Figure 1 for a comprehensive breakdown of each running
session). These sessions were performed under comfor-
table environmental conditions (Dry Globe temperature:
27.0 ± 0.8°C, Relative Humidity: 58 ± 3%, Wind Speed
4.9 ± 0.8 km.h−1).

Cycling training
All cycling sessions were performed in a laboratory (Dry
Bulb Temperature: 25.1 ± 0.1°C, Relative Humidity: 52 ±
0%) on a calibrated wind-braked ergometer (Evolution
Pty. Ltd., Melbourne, Australia), using customised data
collection software (Cyclemax, School of Sport Science,
Exercise & Health, The University of Western Australia).
This software program provided instantaneous and mean
power feedback, which enabled participants to perform
the training sessions based on their pVO2peak (Table 1)
attained during the GXT (mean pVO2peak: 304 ± 10 W,
see Figure 1 for a comprehensive breakdown of each cycle
session).

Heart rate, ratings of perceived exertion
Heart rate and RPE were collected at 5 min intervals
(when the exercise task was of a continuous nature; D1,
D4 and D6) or at the end of each interval effort (for days
where interval training was performed; D2 and D5) du-
ring the training sessions for RTB and CTB. Heart rate
was measured using a Garmin HR monitor (Garmin
Forerunner 110, Garmin International Inc, Kansas,
USA), while RPE adopted Borg’s 6–20 scale (6 = no exer-
tion to 20 =maximal exertion) [19].

Food intake
Participants completed a food diary for the entire seven
days of RTB and CTB. They were required to record de-
tailed information on food type and serving size. To
standardise the food intake between the different training
weeks, participants were instructed to replicate their daily
eating habits for the duration of the study. This data was
then entered into a commercial software program (Food-
works 2007, Version 5, Service-pack 1) to obtain the per-
centage of macronutrient (carbohydrates, fats, protein),
food iron content and total kilojoule (kj) intake.

Blood collection and analysis
After participants lay down for a minimum of 5 min, ven-
ous blood was collected via venepuncture of an antecubital
forearm vein into two 8.5 ml SST II gel vacutainers (BD,
PL6 7BP, United Kingdom). Subsequently, the blood clot-
ted for 60 min at room temperature, before being centri-
fuged at 10°C and 3000 rpm for 10 min. The serum
supernatant was divided into 1 ml aliquots and stored
at −80°C until analysis. Serum iron studies and high sensi-
tivity C-reactive protein (CRP) were measured at Royal
Perth Hospital Pathology Laboratory (Pathwest, Perth,
Western Australia, Australia). Serum iron was measured
using the Architect analyser (c1600210), and determined
using an Iron Reagent (Sentinel Diagnostics, Milano,
Italy). Coefficient of variation (CV) for iron determination
at 12.01 and 43.35 μmol.L−1 was 1.73 and 0.61%, respec-
tively. Serum ferritin levels were determined using an
Architect analyser (1SR06055) and a Ferritin Reagent
(Abbott Diagnostics, Illinois, USA). The CV for ferritin
determination at 28.62, 223.05 and 497.85 μg.L−1 was
4.58, 4.46 and 4.36%, respectively. Transferrin was
measured using Architect analyser (c1600210), and de-
termined using a Transferrin Reagent (Abbott Diagnostics,
Abbott Laboratories Abbott Park, IL 60064 USA).
The CV for transferrin determination at 19.29, 32.23,
42.60 μmol.L−1 was 1.78 and 1.19, 1.39%, respectively. The
CRP was measured using an Architect analyser (c16000),
and determined using a CRP Vario Reagent (Abbott
Diagnostics, Abbott Laboratories, Abbott Park, IL 60064,
USA). The CV for CRP determination at 5.89 and
24.76 mg.L−1 was 2.08 and 2.03%, respectively.

Urine collection and analysis
Urine samples were collected in 75 ml sterilised containers
and were centrifuged at 10°C and 3000 rpm for 10 min.
The supernatant was divided into 1 ml aliquots and stored
at −80°C until analysis. Urinary hepcidin-25 was mea-
sured at the Department of Clinical Chemistry, Radboud
University Nijmegen Medical Centre, the Netherlands, by a
combination of weak cation exchange chromatography and
time-of-flight mass spectrometry (WCX-TOF MS) [20,21].
An internal standard (synthetic hepcidin-24; custom made
Peptide International Inc.) was used for quantification.
Peptide spectra were generated on a Microflex LT matrix-
assisted laser desorption/ionisation TOF MS platform
(Bruker Daltonics). Values were normalised to urine creatin-
ine values and reported in nmol/mmol creatinine. The lower
limit of detection was 0.1 nmol.L−1 with an intra-run and
inter-run CV of 3 to 7% and 10 to 13%, respectively [22].

Statistical analysis
Results are expressed as mean and standard error of the
mean ± SEM. Repeated measures ANOVA analysed time,
trial and time*trial effects of the different RTB and CTB
sessions on various serum iron and inflammatory parame-
ters, as well as urinary hepcidin levels. Post-hoc paired sam-
ples t-tests were used to determine where specific trial
differences existed, using an alpha level set at p ≤ 0.05.
Cohens-d ES were also calculated (<0.4 = small, 0.4-0.8 =
moderate, >0.8 = large).

Results
Heart rate and ratings of perceived exertion
Mean HR for each trial was expressed as a percentage of
the maximum HR (HRmax) attained during the running
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and cycling GXT; which were 193 ± 3 and 186 ± 3 bpm,
respectively. Mean percentage of HRmax was not signifi-
cantly different between any of the running and cycling
training sessions on their corresponding days (Table 1).
Mean RPE was significantly higher (p ≤ 0.05) in all cycle
training sessions as compared to running on their corre-
sponding days (Table 1).

Food intake
Daily kJ for RTB and CTB was 10,171 ± 305 and 10,027 ±
268 kJ, respectively. For RTB, the percentage composition
of daily kJ intake for carbohydrates, fats and proteins was
47 ± 2, 27 ± 2 and 22 ± 1%, respectively. For CTB, the per-
centage composition of daily kJ intake for carbohydrates,
fats and proteins was 49 ± 2, 25 ± 2 and 22 ± 1%, respec-
tively. The daily food iron content for RTB and CTB was
6.7 ± 0.5 and 6.7 ± 0.6 mg, respectively. Daily energy in-
take, the percentage composition of carbohydrates, fats
and proteins, as well as food iron content were not dif-
ferent between conditions (p > 0.05).

Blood parameters
Blood parameters are displayed in Table 2. No time or
trial effects were recorded for serum ferritin and iron, as
well as transferrin saturation on D1, R3 and R7 for both
RTB and CTB. Although no trial effects existed for CRP,
time effects revealed that CRP levels were significantly
lower (p ≤ 0.05) at R7 as compared to D1 during CTB.

Urinary hepcidin
Urinary hepcidin levels on the exercise days (D1, D2, D6)
are displayed in Table 3. On D1, significant time and inter-
action effects (p ≤ 0.05) were demonstrated, with post-hoc
analysis revealing that hepcidin levels were significantly
higher 3 h post-exercise as compared to baseline during
RTB (p ≤ 0.05), which was supported by a large ES
(d = 1.68). Furthermore, 3 h post-exercise hepcidin
levels were significantly higher (p ≤ 0.05) during RTB as
Table 2 Mean (±SEM) baseline serum ferritin, iron, transferrin
Recovery Days 3 and 7 in the running (RTB) and cycling (CTB

Blood Parameters RTB

Day 1 Recovery 3

Serum Ferritin (μg.L−1)
79.3 82.6

(15.0) (16.0)

Serum Iron (μmol.L−1)
19.6 20.3

(2.0) (1.5)

Transferrin Saturation (%)
33 34

(5) (2)

CRP (mg.L−1)
1.08 1.10

(0.35) (0.34)
aSignificantly different to CTB Day1.
compared to CTB (d = 0.68, moderate). For D2, there were
no significant main effects, although a large ES (d = 0.99)
suggested that hepcidin levels may be increased 3 h post-
exercise when compared to baseline for RTB. Additionally,
baseline hepcidin levels were significantly higher at D2 as
compared to D1 for RTB (p ≤ 0.05). For D6, no significant
main effects were again recorded. However, large ES sug-
gested hepcidin levels may increase 3 h post-exercise as
compared to baseline in both RTB (d = 1.69) and CTB
(d = 0.99). Basal urinary hepcidin levels for D1, R3 and R7
are displayed in Table 4. No trial effects were recorded
between days, but time effects revealed that hepcidin
levels were significantly higher at R3 (p = 0.010; d = 0.79,
moderate) and R7 (p = 0.016; d = 0.49, moderate) as
compared to baseline in RTB. Additionally, a large ES
(d = 1.26) suggested that basal hepcidin levels were higher
at R7 than D1 during CTB.

Discussion
The results of this investigation suggest that acute bouts
of running (as compared to cycling) performed over a
seven day period have the ability to significantly increase
basal urinary hepcidin levels. Hepcidin levels were also
significantly elevated 3 h post-exercise compared to
baseline on D1 of RTB, with strong ES evident to sug-
gest acute increases in hepcidin levels in the post-
exercise recovery period after the majority of all training
sessions. Such findings concur with the results of previ-
ous research [3-9]. Despite this, it should also be consid-
ered that any changes in basal hepcidin levels at R7 as
compared to D1 did not appear to directly impact any
iron parameters in either condition.

Hepcidin and inflammation
Previously, it has been suggested that elevated hepcidin
levels in the post-exercise recovery period may alter
iron metabolism in athletes [3-9]. These studies have
highlighted the role of the inflammatory cytokine IL-6
saturation and C-reactive protein (CRP) at Day 1,
) training blocks

CTB

Recovery 7 Day 1 Recovery 3 Recovery 7

84.2 84.7 82.4 77.9

(13.7) (17.4) (15.5) (15.5)

17.5 15.8 22.6 17.5

(2.0) (1.0) (2.8) (1.6)

30 26 37 29

(4) (2) (4) (2)

0.91 1.17 1.12 0.75a

(0.33) (0.38) (0.38) (0.28)



Table 3 Mean (±SEM) for urinary hepcidin levels at baseline (T0) and 3 h post-exercise (T3) during the exercise days
for the running (RTB) and cycling (CTB) training blocks

Urinary hepcidin (nM.mmol Cr−1) p-values Effect sizes

T0 T3 Trial Time Interaction T0-T3 T0: RTB-CTB T3: RTB-CTB

Day 1

RTB
0.46 1.19a

0.179 0.002 0.014

1.68

0.15 0.68
(0.14) (0.26)

CTB
0.52 0.64b

0.63
(0.06) (0.10)

Day 2

RTB
0.76c 1.38

0.524 0.245 0.190

0.99

0.14 0.54
(0.20) (0.37)

CTB
0.85 0.84

0.02
(0.24) (0.28)

Day 6

RTB
0.71 0.93

0.173 0.171 0.505

1.69

0.29 0.25
(0.04) (0.16)

CTB
0.43 0.80

0.99
(0.12) (0.28)

aSignificantly different to T0.
bSignificantly different to RTB Day 1, T3.
cSignificantly different to RTB Day 1, T0.
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and hemolysis in this process, suggesting that chronic-
ally elevated hepcidin levels may explain the high inci-
dence of iron deficiency commonly reported in athletes.
Such a proposition appears plausible based on the re-
sults of the current investigation, since basal hepcidin
levels were significantly higher during RTB at D2, R3
and R7, compared to D1. Furthermore, although not sta-
tistically significant, moderate to large ES suggest basal
hepcidin levels appeared higher at R3 (d = 0.64) and R7
(d = 1.26) compared to baseline in CTB.
Despite the large ES for hepcidin to increase, the in-

flammatory marker CRP was not significantly higher at
Table 4 Mean (±SEM) urinary hepcidin levels at baseline (T0)
(RTB) and cycling (CTB) training blocks

Urinary hepcidin (nM.mmol Cr−1) p-values

T0 Trial Time Int

Day 1

RTB
0.62

1.000 0.047

(0.20)

CTB
0.56

(0.10)

Recovery 3

RTB
0.80a

(0.17)

CTB
0.64

(0.18)

Recovery 7

RTB
0.67a

(0.14)

CTB
0.76

(0.18)
aSignificantly different to RTB Day1.
R3 and R7 as compared to D1 in both conditions,
suggesting no accumulated increases in inflammation.
Typically, exercise-induced hepcidin production has
been linked specifically to elevations in IL-6, which
peaks immediately post-exercise [3-9,18]. Although IL-6
was not measured here, CRP synthesis can be stimulated
by increases in pro-inflammatory cytokines such as IL-6,
IL-1 and tumor necrosis factor (TNF)-alpha [23,24], and
as such, CRP was selected as a surrogate measure of
inflammation. Despite CRP levels being previously re-
ported to be elevated up to 24 h post-exercise [6], this
was not observed in the current investigation. However,
on Day 1 and Recovery days 3 and 7 for the running

Effect sizes

eraction RTB -CTB Day 1-Recovery 3, 7 Recovery 3-7

0.365

0.15 - -

0.28

0.79

-

0.64

0.20

0.49 0.24

1.26 0.21
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in agreement with these results, previous investigations
have shown IL-6 and CRP to be lower after nine weeks
of BCT in female soldiers [25]. Such an outcome sug-
gests that any exercise-related inflammatory processes
that were evident here were quickly returned to baseline
levels during the subsequent recovery period.
Recently, Auersperger and colleagues [14] investigated

the effects of an eight week continuous or interval run-
ning program on hepcidin, inflammatory markers and
iron status in females. These authors reported that
serum hepcidin levels in both groups were significantly
lower (compared to baseline) after the first three week
period, as well as one week after completing a competi-
tive race at the end of the study (10 or 21 km). Additio-
nally, Ma et al. [26] reported that basal serum hepcidin
and IL-6 gene expression were not significantly different
between female distance runners and matched controls.
The contradictory results of Auersperger et al. [14] and
Ma et al. [26] to those of the current investigation may
have been influenced by two factors: (a) their popula-
tions declining (or pre-existing poor) iron status during
the training period, and (b) hormonal fluctuations in the
menstrual cycle. Previously, these factors have both been
raised as potential mechanisms that could attenuate hep-
cidin production (for review see [27]). For example,
serum ferritin has recently been reported to dictate
hepcidin activity in athletes [17]. Here, Peeling and col-
leagues [17] demonstrated that low serum ferritin levels
(<30 μg.L−1) were linked to the suppression of pre-
exercise levels of hepcidin, and the magnitude of hepci-
din response to an acute exercise stimulus. Additionally,
concerns were raised for individuals with ‘suboptimal’
iron stores (serum ferritin 30–50 μg.L−1), as the post-
exercise hepcidin response in these individuals was still
evident after 3 h of recovery, at a similar magnitude to
those athletes presenting with more healthy iron stores.
Considering that both the running and control groups in
Ma et al. [26] presented with poor iron stores (at the time
of biological sampling; serum ferritin of < 35 ug.L−1), they
would also be classified as Stage One Iron Deficient ac-
cording to numerous published guidelines for athletes
[2,28]. Consequently, these previous findings may only be
relevant to populations displaying a poor iron status.
Karl et al. [25] also reported that serum hepcidin levels

were unchanged in female soldiers who had performed a
nine week BCT training program while receiving an iron
fortified food bar (twice daily) or a placebo equivalent.
However, when soldiers were regrouped according to
their iron status (either Normal [NORM], Iron Deficient
[ID] or Iron Deficient Anemic [IDA]), post-BCT basal
hepcidin levels were significantly lower in IDA as com-
pared to NORM, while the ID group showed similar de-
creases without reaching significance (p = 0.06). Most
importantly, it should be highlighted that during the
aforementioned investigations, basal hepcidin samples
were obtained at the end of specific training phases
[14,25] or at a single time point [26], without measuring
any acute changes over the course of the training period.
In our investigation, basal hepcidin levels were measured
on five occasions (D1, D2, R3, D6, R7), in addition to
3 h post-exercise samples (D1, D2, D6) to highlight the
acute hepcidin response. Additionally, this is the first in-
vestigation to explore if any benefits associated with iron
metabolism might be present after completing a series
of non-weight-bearing exercise (cycling) sessions as
compared to weight-bearing activity (running) in active
males.
Numerous exercise investigations have explored the

hepcidin response acutely [3-9], showing that the hor-
mone levels are significantly elevated 3 h post-exercise
(as compared to baseline) after each exercise session.
However, such a response was only recorded here on D1
of RTB, with moderate to large ES recorded for the ma-
jority of the other running and cycling sessions. Such
findings may be linked to the accumulation of acute
post-exercise increases in hepcidin (supported by moder-
ate to large ES), which may be responsible for raising
basal levels (as seen at R3 and R7). As such, elevated
basal hepcidin activity may have reduced the magnitude
by which hepcidin increases acutely, as a result of the
exercise task. Despite this, it would appear that acute
bouts of running (and to a lesser degree cycling) per-
formed over a seven day period, may still have the ability
to increase basal urinary hepcidin levels (e.g. D1 vs. R7).
In consideration of this finding, the accumulation of

hepcidin levels over an extended training program might
help to explain the high incidence of iron deficiency
commonly observed amongst athletes. Such a propos-
ition is supported by McClung et al. [16], where four
days of military specific training followed by a three day
cross-country ski march performed by male soldiers
(~20 km/day, with 45 kg backpacks), caused an increase
in serum IL-6 and hepcidin. This increase in hepcidin
activity after their military training would be comparable
to the significant hepcidin increases recorded at R7
(as compared to D1 in RTB). However, since training
volume has been shown to influence hepcidin produc-
tion [3], the findings of McClung and colleagues [16] are
likely to be exacerbated in comparison to those pre-
sented here, possibly as a result of the greater training
load undertaken. Furthermore, since the aforementioned
investigations have only adopted weight-bearing activity
[14,16,25], it is also possible that these results may be
different under the influence of non-weight-bearing ex-
ercise. With this in mind, it is evident that basal hepci-
din levels were likely higher at R7 as compared to D1 in
the CTB. Therefore, it is possible that cycling training
also has the potential to elevate basal hepcidin levels.
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However, given the weight supported nature of the exer-
cise task, it might be that exercise of an extended du-
ration, and/or additional training sessions are required
before a similar magnitude of response is recorded com-
parative to running-based training.
Finally, although the findings of this investigation are

novel and important, a limitation of this study may be
perceived from the measurement of hepcidin in the
urine instead of serum. Previously, it has been demon-
strated that urinary hepcidin measures were substantially
lower than circulating serum levels [29]. As such, serum
measurements are preferable to detect small changes
in hepcidin levels. However, due to the nature of the
current experimental design, involving numerous sam-
pling time points and logistical requirements for each
seven day period, urinary measurements were selected
as it represented the most practical option for sample
collection. Regardless, it is possible that if serum hepci-
din measurements were performed here instead of urine
(similar to [16]), the tendency for hepcidin levels to be
higher at the end of RTB and CTB may have become
stronger and more consistent.

Iron parameters
This investigation demonstrated that iron parameters
(serum ferritin and iron, transferrin saturation) remained
relatively stable over the course of RTB and CTB, pos-
sibly due to the relatively short duration of the expe-
rimental period (seven days), as compared to other
investigations that obtained conflicting results [14,15,25].
Currently, numerous studies have highlighted the im-

portance of maintaining optimal iron stores throughout
a training program. However, a reduction in iron status
over the course of an extended training period has been
commonly reported [15,25,30]. McClung et al. [15] pre-
viously examined how iron parameters may be altered
by BCT. These authors reported that markers of both
iron storage (serum ferritin) and transport (transferrin
saturation) had decreased post-BCT. In support of these
findings, Di Santolo et al. [31] also suggested that ath-
letes who performed ~11 h per week of training had re-
duced ferritin and transferrin saturation levels compared
to sedentary controls. The discrepancy between our
results and these investigations is potentially due to the
shorter duration of the intervention employed here (five
sessions over seven days) as compared to the substan-
tially greater number of accumulated sessions over the
two month period in other studies [15,25]. Considering
that both hepcidin and iron parameters during CTB
were not significantly different at R7 as compared to D1,
perhaps the use of cycling (as opposed to running) may
be better suited to iron deficient individuals, who are re-
quired to maintain fitness levels, while consuming iron
supplements to replenish iron stores. Specifically, as
hemolysis contributes towards iron loss [32], the use of
non-weight bearing activity (such as cycling) to reduce
hemolysis [13] may be beneficial.
Previously, Telford and colleagues [13], demonstrated

significantly higher levels of hemolysis after completing an
intensity matched running, as compared to cycling trial
(1 h run or cycle at 75% VO2peak). These results were at-
tributed to the impact forces associated with footstrike
that increased hemolysis, possibly having implications for
exercise-induced iron loss in athletes [32]. Similar results
were also reported by Sim et al. [7], where 10 well trained
male triathletes performed four separate experimental ses-
sions consisting of high (8 × 3 min intervals at 85% v or
pVO2peak, W:R 2:1) and low (40 min continuous exercise
at 65% v or pVO2peak) intensity running and cycling, with
significant increases in hemolysis immediately post-
exercise reported in all trials except for low intensity cyc-
ling. However, since the current investigation adopted
both high and low intensity sessions during CTB (within a
relatively short duration of seven days), any benefits asso-
ciated with reduced hemolysis during this training period
may not have been reflected by the serum iron parame-
ters. To this end, it remains unknown if these findings
may be altered over the course of an extended cycling pro-
gram (e.g. >2 months).

Conclusion
In summary, these results suggest that basal urinary hep-
cidin levels may be significantly elevated after a series of
acute running sessions (five sessions over seven days).
However, such events may not be observed if an identi-
cal cycling program is adopted. Perhaps, more exercise
sessions, or sessions of greater duration may be under-
taken with cycling as an exercise medium, before a sig-
nificant increase in basal hepcidin levels is recorded.
Additionally, despite any variations in hepcidin, this did
not appear to influence serum iron parameters in RTB
and CTB. This study supports the idea that basal hep-
cidin levels may increase (due to an accumulation of
acute exercise-induced responses) over the course of an
extended training program; although it remains to be
established if such a response may compromise an indi-
vidual’s ability to absorb and recycle iron, which may ex-
plain the high incidence of iron deficiency commonly
reported in athletes.
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