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Abstract

Background: A better understanding of hypoxia-induced changes in substrate utilisation can facilitate the
development of nutritional strategies for mountaineers, military personnel and athletes during exposure to altitude.
However, reported metabolic responses are currently divergent. As such, this systematic review and meta-analysis
aims to determine the changes in substrate utilisation during exercise in hypoxia compared with normoxia and
identify study characteristics responsible for the heterogeneity in findings.

Methods: A total of six databases (PubMed, the Cochrane Library, MEDLINE, SPORTDiscus, PsychINFO, and CINAHL
via EBSCOhost) were searched for published original studies, conference proceedings, abstracts, dissertations and
theses. Studies were included if they evaluated respiratory exchange ratio (RER) and/or carbohydrate or fat
oxidation during steady state exercise matched for relative intensities in normoxia and hypoxia (normobaric or
hypobaric). A random-effects meta-analysis was performed on outcome variables. Meta-regression analysis was
performed to investigate potential sources of heterogeneity.

Results: In total, 18 studies were included in the meta-analysis. There was no significant change in RER during
exercise matched for relative exercise intensities in hypoxia, compared with normoxia (mean difference: 0.01, 95%
CI: -0.02 to 0.05; n = 31, p = 0.45). Meta-regression analysis suggests that consumption of a pre-exercise meal
(p < 0.01) and a higher exercise intensity (p = 0.04) when exposed to hypoxia may increase carbohydrate oxidation
compared with normoxia.

Conclusions: Exposure to hypoxia did not induce a consistent change in the relative contribution of carbohydrate or
fat to the total energy yield during exercise matched for relative intensities, compared with normoxia. The direction of
these responses appears to be mediated by the consumption of a pre-exercise meal and exercise intensity.
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Background
An increasing number of people ascend to altitude each
year for recreational, occupational, and sporting pur-
poses [1]. The hypoxic exposure experienced at altitude
is known to cause a curvilinear impairment in endur-
ance performance with increasing levels of hypoxia [2].
However, the changes in substrate utilisation associated
with these decrements in performance are currently un-
clear, with some authors reporting an increased

contribution of carbohydrate to the total energy yield [3,
4], and others demonstrating an increased contribution
of fat oxidation [5, 6]. Developing a better understanding
of these changes in substrate utilisation in hypoxia is
vital in designing dietary interventions to maintain and/
or improve performance in such conditions.
Exposure to hypoxic environments may alter substrate

utilisation through multifarious mechanisms. It is pur-
ported that the mechanism responsible for increased
carbohydrate dependency in hypoxia is mediated by the
sympathetic nervous system, via the secretion of epi-
nephrine and norepinephrine, stimulating glycogenolysis
and gluconeogenesis [3, 7]. Alternative evidence suggests
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that increases in the transcription factor hypoxic-inducible
factor 1 alpha (HIF-1α) may be responsible for the in-
creases in fat oxidation observed by some in hypoxia, via
upregulation of the fatty acid-activated transcription factor
peroxisome proliferator-activated receptor alpha (PPARα)
[8]. Albeit in rats, PPARα has been demonstrated to de-
activate pyruvate dehydrogenase [9], inhibiting the conver-
sion of pyruvate to acetyl-coA and therefore enabling
greater fat flux for oxidation [10].
A myriad of factors has been suggested to influence

the interaction between hypoxic exposure and substrate
utilisation. These include, but are not limited to: charac-
teristics of hypoxic exposure (severity, duration and
type) [3], nutritional status of participants (fasted or fed
before exercise/exogenous supplementation during exer-
cise) [4, 5] and sex of participants [11]. In relation to
hypoxic exposure, hypobaric hypoxia (HH) has been
suggested to elicit more severe physiological responses
(greater hypoxemia and lower arterial oxygen saturation)
compared with normobaric hypoxia (NH) [12]. Although
this is contested in the literature [13, 14] it seems plaus-
ible that these physiological differences may induce a
greater reliance on carbohydrate oxidation to achieve a
higher yield of ATP per unit of oxygen consumption,
compared with fat oxidation [15]. This theory may also
be applied to the effect of altitude severity on subse-
quent substrate oxidation. Further, metabolic responses
may be different between sex, with females demonstrat-
ing a greater relative utilisation of fat oxidation [11, 16].
This may be attributable to a number of factors, with fe-
males demonstrating a greater relative fat mass [17] and
intramuscular triglyceride stores [18], as well as better
mobilisation of free fatty acid (FFA) from subcutaneous
adipose tissue [19]. It has also been suggested that this
propensity for fat oxidation may be mediated by the ster-
oid hormones estrogen (predominantly 17 β-estradiol)
and progesterone [20, 21]. Regarding nutritional status of
participants, equivocal metabolic findings have been ob-
served in response to carbohydrate supplementation dur-
ing exercise in hypoxia, compared with normoxia [4, 5],
which demonstrates the limited current understanding
of the interaction between dietary interventions and
hypoxic exposure.
To gain a clear understanding of changes in substrate

utilisation during exercise in hypoxia compared with
normoxia, a systematic evaluation is required to explain
the equivocal results of previous studies. Due to the
greater exercise-induced physiological stress experienced
when performing a matched absolute workload under
hypoxic conditions [22], this meta-analysis focuses solely
on exercise matched to relative intensities. The aim of
this meta-analysis was to identify the study characteris-
tics responsible for heterogeneity between findings,
using subgroup analyses and meta-regression.

Methods
The current systematic review and meta-analysis was
performed in accordance with the Preferred Reporting
Items for Systematic Review and Meta-analyses
(PRISMA) guidelines [23].

Literature search
A literature search was conducted using the electronic
bibliographic databases PubMed and the Cochrane Li-
brary, as well as searching MEDLINE, SPORTDiscus,
PsychINFO, and CINAHL via EBSCOhost. The initial
search of titles, abstracts and keywords was conducted
on 15th November 2016 using terms related to ‘exercise’,
‘hypoxia’, ‘substrate’ and ‘oxidation’. A final search was
conducted on 5th June 2018. The specific keywords and
full search strategy can be found in Additional file 1.
The reference lists of all included studies and relevant
review articles were screened for possible inclusion. No
language restrictions were applied and in the case of
studies available only as an abstract, authors were con-
tacted for the full dataset.

Inclusion criteria
Included studies were required to meet the following cri-
teria: participants in the study were between the ages of
18 and 65 years, not pregnant, non-smokers, with no
history of diabetes, gastrointestinal, inflammatory, meta-
bolic, cardiovascular, neurological or psychological dis-
ease. In order to minimise potential publication bias,
studies published in peer reviewed journals, conference
proceedings, theses or dissertations were eligible for
inclusion.
All studies were required to measure RER and/or

carbohydrate or fat oxidation. These measures were re-
quired to be quantified during exercise matched for rela-
tive intensities in hypoxic and normoxic environments.
Hypoxic exposure was defined as terrestrial altitude via
geographical location (TA) or simulated altitude (NH or
HH) via a hypoxic tent, hypoxic chamber or breathing
mask. Exposures were required to be > 1500 m or a sim-
ulated equivalent (i.e., low altitude or higher) [24]. All
participants within selected studies had not been ex-
posed to > 1500m (or a simulated equivalent) within the
previous 3 months. Normoxic trials were required to
provide a viable within-participant control (i.e. equiva-
lent measure(s) quantified in the same participants as a
separate trial in normoxic conditions). The exercise was
required to be > 5min in duration to achieve
steady-state values at a fixed exercise intensity [25].
Two researchers (AG and OS) independently assessed

studies for inclusion and later compared notes to reach
a mutual consensus. Disagreements about the eligibility
of any particular studies were resolved by a third re-
viewer (KD). Potential studies that could not be excluded
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based on their title or abstract were retrieved in full-text
and reviewed against the inclusion/exclusion criteria in-
dependently by two researchers (AG and OS) with a
third researcher (KD) used to settle any disputes. In
total, 18 studies met the inclusion criteria and were in-
cluded in this meta-analysis.

Abstraction of data
Data were extracted independently by two researchers
(AG and OS) into a standardised spreadsheet, which in-
cluded (i) characteristics of articles valid for review; (ii)
the Cochrane Collaboration’s tool for assessing risk of
bias, and (iii) outcome data suitable for analysis based
on mean, standard deviation (SD) and sample size. Fur-
ther data was extracted regarding participant character-
istics, acclimatisation status, nutritional manipulations,
exercise intensities and duration, exercise mode, and se-
verity and duration of hypoxic exposure. In studies
which employed multiple exercise intensities, each re-
spective intensity was directly compared with the
equivalent intensity in the alternate condition.
In studies which reported outcome variables across

numerous time points during exercise, values were aver-
aged to calculate the mean. In addition, SD values were
averaged using the following formula:

n1
 
S12 þ D12

!
þ n2ðS22 þ D22Þ…

ðn1 þ n2Þ…
where:
n1 = sample size of group 1
n2 = sample size of group 2
S1 = SD of group 1
S2 = SD of group 2
D1 =mean of group 1 – mean of total group
D2 =mean of group 2 – mean of total group
… denotes inclusion of further data points if required

Absolute substrate oxidation data was converted to
g·min− 1. Thus, values expressed as total grams oxidised
throughout exercise were divided by the number of mi-
nutes the variable was measured. Values expressed in
mg·kcal·min− 1 were multiplied by 1000 to convert to
g·kcal·min− 1, and then multiplied by kcal values pro-
vided in the relevant paper for the conversion to g·min−
1. In addition, carbohydrate oxidation data provided in
mmol·min− 1 were divided by 1000 and then multiplied
by the molar mass of glucose (180.1559 g/mol). Where
values were presented as figures, these were digitized
using graph digitizer software (DigitizeIt, Germany) and
the means and SD were measured manually at the pixel
level to the scale provided on the figure.

Assessment of risk of bias in included studies
Two independent reviewers (AG and OS) used The
Cochrane Collaboration’s tool for assessing risk of bias [26]
to determine the risk of bias in each study. Each study was
assessed in the following six domains: sequence generation,
allocation concealment, blinding of participants, personnel
and outcome assessors, incomplete outcome data, selective
outcome reporting and other sources of bias (e.g. has been
claimed to have been fraudulent). A judgement was made
on each of the domains by the two independent researchers
as to whether they were ‘high risk ‘or ‘low risk’. When in-
sufficient detail was reported then the judgement of ‘un-
clear risk’ was made. Disagreements were solved initially via
discussion between the two independent reviewers however
a third reviewer (KD) was consulted for dispute resolution.
‘Risk of bias graphs’ were computed in Review Manager
(RevMan) 5.3 (The Cochrane Collaboration) to include
low, unclear and high risk for each domain.

Statistical analysis
Outcome measures were quantified using mean difference
between conditions with 95% confidence intervals (CI)
which were used as the summary statistic. A random-effects
meta-analysis was performed by AG, JM and KD using
Comprehensive Meta-Analysis Software (version 3, Biostat,
Englewood, NJ, USA). The inputted data included sample
sizes, outcome measures with their respective SDs, and a
correlation coefficient for within-participant measurements.
These correlation coefficients were estimated from prior
studies in our laboratory and were as follows: RER r = 0.78,
absolute carbohydrate oxidation r = 0.70, absolute fat oxida-
tion r = 0.81, relative carbohydrate oxidation r = 0.79, relative
fat oxidation r = 0.79 [5, 6].
A negative mean difference indicates that hypoxic ex-

posure was associated with a decrease in the respective
outcome variable, while a positive mean difference indi-
cates that hypoxic exposure was associated with an in-
crease in the respective outcome variable. Heterogeneity
between trials was assessed using the Chi-squared statis-
tic, I-squared statistic and the Tau-squared statistic.
To examine whether any conclusions were dependent

on a single study, sensitivity analyses was employed for
each variable by repeating the analyses with each study
omitted in turn.
Where the number of comparisons was suitable,

meta-regression analysis was performed. This analysis was
used to determine whether continuous or categorical data,
including severity of hypoxic exposure, exercise intensity
and pre-exercise nutritional state could explain the vari-
ation in the values observed between studies. Each moder-
ator was analysed in a meta-regression independently to
determine their relationship with the outcome variable.
Where significant moderators were identified, multiple
meta-regression analysis was conducted to determine if
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these remained significant, whilst controlling for all other
moderators. All meta-regressions were performed using
the restricted maximum likelihood (REML) method with
Knapp-Hartung adjustment.
Duration of hypoxic exposure was categorised into

acute and chronic as per each study’s description of their
own exposure (acute < 44 h; chronic = 3–28 days). Overall
mean differences, CIs and p values were reported for all
variables during exercise matched to relative intensities.
Meta-regression analysis was performed only on the out-
come variable RER, as this represents the most appropri-
ate measure to assess changes in the relative substrate
contributions of carbohydrate and fat (i.e., physiological
shifts in substrate utilisation). Meta-regression analysis of
absolute fat and carbohydrate oxidation rates was deemed
unnecessary based on these responses determining the
RER values for each study.

Exploration of small study effects
Small study effects were explored using funnel plots of
mean difference versus standard errors [26], and by
quantifying Egger’s linear regression intercept. A statisti-
cally significant Egger’s statistic (p < 0.05) indicates the
presence of small study effects.

Results
Overview
A total of 1743 studies published in peer reviewed scien-
tific journals were initially identified through database
screening and other sources. Following the full screening
process, 18 studies were identified as suitable for the
meta-analyses (Fig. 1). Within the 18 studies, a total of 58
comparisons between normoxic and hypoxic conditions
were made for exercise matched for relative intensities. Of
these 58 comparisons, 31 reported RER (Table 1) and 27
reported substrate utilisation (Table 2) ((absolute carbohy-
drate oxidation = 7, absolute fat oxidation = 6; relative
carbohydrate oxidation = 7, relative fat oxidation = 7).

Participant demographics and study characteristics
Of the 170 participants included in the analysis, 146 were
male (86%) and 24 were female (14%). Age was reported
in all studies and ranged from 20 to 39 years (mean = 27
years). BMI was reported in 15 of the 18 studies and
ranged from 21.3 to 28.6 kg·m− 2 (mean = 23.4 kg·m− 2).
VO2max was reported in 17 of the 18 studies and ranged
between 2.61 and 4.99 L·min− 1 (mean = 3.75 L·min− 1).
Exercise duration ranged from 5 to 105min (mean =

39min). Participants in normoxic trials performed exer-
cise at intensities ranging from 30 to 82% of normoxic
VO2max (mean = 61% SL VO2max) and hypoxic trials were
performed at 30–83% of hypoxic specific VO2max (mean
= 61% hypoxic VO2max). The severity of hypoxia quanti-
fied in meters, ranged from 1500m to 4300m (mean =

3499 m). Feeding status was only specified in 26 out of
31 comparisons (fasted = 8; fed = 18).

Meta-analysis
Individual study statistics and results for each variable are
provided in the supplementary tables (Additional files 2, 3,
4, 5 and 6).

RER
There was no significant change in RER during exercise
matched for relative intensities in hypoxia, compared
with normoxia (mean difference: 0.01, 95% CI: -0.02 to
0.05; n = 31, p = 0.45; Fig. 2). The degree of heterogeneity
was found to be high between studies (I2 = 99.87%, Q =
27,768, τ2 = 0.01, df = 30). Sensitivity analysis revealed
minor changes only, and these changes did not substan-
tially alter the overall mean difference. Inspection of the
funnel plot and Egger’s regression intercept revealed that
there was little evidence of small study effects (intercept
= 12.61, 95% CI: -5.87 to 31.08; p = 0.17).
Meta-regression analysis (Table 3) indicated a differ-

ence in RER responses between participants in the fasted
and fed state (p < 0.01), with participants in the fasted
state demonstrating a decreased RER, and those in the
fed state demonstrating an increased RER during exer-
cise matched for relative exercise intensity in hypoxia,
compared with normoxia. Using exercise intensity as a
moderator, a greater exercise intensity was associated
with a greater increase in RER during exercise matched
to relative intensity in hypoxia, compared with nor-
moxia. The slope of the regression was significantly posi-
tive (p = 0.04), with a standardised increase of 0.0033
units, for every percentage increase in exercise intensity.
When the significant variables from the bivariate analysis
were entered into the multiple regression models, both
pre-exercise nutritional state and exercise intensity
remained significant. The multiple regression model ex-
plained 42% of the variance observed (R2 = 0.42).

Relative carbohydrate and fat oxidation rates
There was no significant change in relative carbohydrate
oxidation rates during exercise matched for relative in-
tensities in hypoxia, compared with normoxia (mean dif-
ference: 1.74, 95% CI: -4.76 to 8.25%; n = 7, p = 0.60;
Additional file 7). The degree of heterogeneity was found
to be high between studies (I2 = 99.09%, Q = 659, τ2 =
71.00, df = 6). Sensitivity analysis revealed minor changes
only, and these changes did not substantially alter the
overall mean difference. Inspection of the funnel plot
and Egger’s regression intercept revealed that there was
little evidence of small study effects (intercept = 0.69,
95% CI: -16.79 to 18.17; p = 0.92).
There was no significant change in relative fat oxida-

tion during exercise matched for relative intensities in
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Fig. 1 Flow chart of study selection
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Table 1 Studies investigating RER during exercise matched for relative intensities in hypoxia, compared with normoxia

Study Participants Study design Type of
hypoxia

Altitude (m) Duration
of hypoxia

RER

Beidleman et al.
(2002) [16]

8 (females) Treadmill exercise at 70% relative
VO2max until volitional exhaustion

HH 4300 180min SL: 0.89 ± 0.04
AH: 0.85 ± 0.03

Beidleman et al.
(2003) A [45]

6 (male = 5,
female = 1)

15 min cycling at 40% relative VO2max HH 4300 70 min SL: 0.97 ± 0.02
AH: 0.88 ± 0.01

Beidleman et al.
(2003) B [45]

6 (male = 5,
female = 1)

15 min cycling at 70% relative VO2max HH 4300 70 min SL: 1.02 ± 0.02
AH: 1.00 ± 0.03

Bouissou et al.
(1987) [46]

6 (males) 60 min cycling at 60% relative VO2max HH 3000 80 min SL: 0.99 ± 0.02
AH: 1.00 ± 0.01

Braun et al. (2000) [11] 15 (females) 30 min cycling at 65% relative VO2max TA 4300 10 days SL: 0.97 ± 0.01
CH: 0.94 ± 0.01

Friedmann et al.
(2004) [47]

11 (males) 60 min running at ~ 82% relative VO2max NH 2500 120min SL: 0.93 ± 0.02
AH: 0.98 ± 0.07

Fulco et al. (2005)
A [48]

16 (males) 20 min cycling at 48% relative VO2max TA 4300 3 days SL: 0.91 ± 0.01
CH: 0.81 ± 0.01

Fulco et al. (2005)
B [48]

16 (males) 20 min cycling at 48% relative VO2max TA 4300 10 days SL: 0.91 ± 0.01
CH: 0.80 ± 0.01

Fulco et al. (2005)
C [48]

16 (males) 20 min cycling at 68% relative VO2max TA 4300 3 days SL: 0.93 ± 0.01
CH: 0.85 ± 0.01

Fulco et al. (2005)
D [48]

16 (males) 20 min cycling at 68% relative VO2max TA 4300 10 days SL: 0.93 ± 0.01
CH: 0.84 ± 0.01

Hopkins et al. (2003)
A [49]

6 (male = 1,
female = 5)

5 min cycling at 30% relative VO2max NH 3850 25 min SL: 0.82 ± 0.02
AH: 0.86 ± 0.03

Hopkins et al. (2003)
B [49]

6 (male = 1,
female = 5)

5 min cycling at 60% relative VO2max NH 3850 25 min SL: 0.95 ± 0.02
AH: 0.96 ± 0.03

Katayama et al.
(2010) [3]

7 (males) 30 min cycling at 50% relative VO2max HH 2000 100min SL: 0.90 ± 0.01
AH: 0.91 ± 0.02

Lundby and Van Hall (2002) A [22] 8 (male = 6,
female = 2)

60 min cycling at 50% relative VO2max NH 4100 70 min SL: 0.91 ± 0.01
AH: 0.92 ± 0.02

Lundby and Van Hall
(2002) B [22]

8 (male = 6,
female = 2)

60 min cycling at 50% relative VO2max TA 4100 28 days SL: 0.91 ± 0.01
CH: 0.91 ± 0.01

Maher et al. (1974)
A [50]

8 (males) 10 min cycling at 75% relative VO2max TA 4300 44 h SL: 0.99 ± 0.01
AH: 0.98 ± 0.01

Maher et al. (1974)
B [50]

8 (males) 10 min cycling at 75% relative VO2max TA 4300 12 days SL: 0.99 ± 0.01
CH: 0.98 ± 0.01

Matu et al. (2017) A [6] 12 (males) 60 min walking at 50% relative VO2max NH 2150 5 h SL: 0.88 ± 0.04
AH: 0.85 ± 0.06

Matu et al. (2017) B [6] 12 (males) 60 min walking at 50% relative VO2max NH 4300 5 h SL: 0.88 ± 0.04
AH: 0.85 ± 0.06

Messier et al. (2017) [51] 20 (males) 60 min cycling at ~ 67% relative VO2max TA 2150 150min SL: 0.92 ± 0.06
AH: 0.97 ± 0.05

Noordhof et al. (2013)
A [52]

16 (male) 6 min cycling at 45% relative VO2max HH 1500 30 min SL: 0.89 ± 0.03
AH: 0.92 ± 0.02

Noordhof et al. (2013)
B [52]

16 (male) 6 min cycling at 55% relative VO2max HH 1500 30 min SL: 0.91 ± 0.04
AH: 0.94 ± 0.04

Noordhof et al. (2013)
C [52]

16 (male) 6 min cycling at 65% relative VO2max HH 1500 30 min SL: 0.94 ± 0.04
AH: 0.98 ± 0.04

O’Hara et al. (2017) A [5] 7 (males) 5 min cycling at ~ 62% relative VO2max HH 3375 155min SL: 0.92 ± 0.04
AH: 0.83 ± 0.04

O’Hara et al. (2017) B [5] 7 (males) 105 min cycling at ~ 74% relative VO2max HH 3375 155min SL: 0.92 ± 0.03
AH: 0.84 ± 0.05

Peronnet et al. (2006) [4] 5 (males) 80 min cycling at 77% relative VO2max HH 4300 110min SL: 0.93 ± 0.01
AH: 0.97 ± 0.01
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hypoxia, compared with normoxia (mean difference:
-1.74, 95% CI = − 8.25 to 4.76%, n = 7, p = 0.60; Add-
itional file 8). The degree of heterogeneity was found to
be high between studies (I2 = 99.09%, Q = 659, τ2 = 71.00,
df = 6). Sensitivity analysis revealed minor changes only,
and these changes did not substantially alter the overall
mean difference. Inspection of the funnel plot and
Egger’s regression intercept revealed that there was little
evidence of small study effects (intercept = − 0.69, 95%
CI: -18.17 to 16.79; p = 0.92).

Absolute carbohydrate and fat oxidation rates
There was a significant decrease in absolute carbohy-
drate oxidation rates during exercise matched for rela-
tive intensities in hypoxia, compared with normoxia
(mean difference: − 0.57 g·min− 1, 95% CI: -0.74 to − 0.40
g·min− 1; n = 7; p < 0.01; Fig. 3). The degree of heterogen-
eity was found to be high between studies (I2 = 94.66%,
Q = 112, τ2 = 0.05, df = 6). Sensitivity analysis revealed
minor changes only, and these changes did not substan-
tially alter the overall mean difference. Inspection of the

Table 1 Studies investigating RER during exercise matched for relative intensities in hypoxia, compared with normoxia (Continued)

Study Participants Study design Type of
hypoxia

Altitude (m) Duration
of hypoxia

RER

Wyss et al. (1990) [53] 7 (males) 30 min running at ~ 79% relative VO2max NH 3500 60 min SL: 0.90 ± 0.04
AH: 0.93 ± 0.04

Young et al. (1987) A [54] 12 (males) 30 min cycling at 75% relative
VO2max (active between exercise tests)

TA 4300 < 24 h SL: 0.84 ± 0.02
AH: 1.03 ± 0.01

Young et al. (1987) B [54] 12 (males) 30 min cycling at 75% relative
VO2max (active between exercise tests)

TA 4300 13 days SL: 0.84 ± 0.02
CH: 1.03 ± 0.06

Young et al. (1987) C [54] 12 (males) 30 min cycling at 75% relative
VO2max (sedentary between exercise tests)

TA 4300 < 24 h SL: 0.84 ± 0.01
AH: 1.05 ± 0.01

Young et al. (1987) D [54] 12 (males) 30 min cycling at 75% relative
VO2max (sedentary between exercise tests)

TA 4300 13 days SL: 0.84 ± 0.01
CH: 1.13 ± 0.05

Values presented as mean ± SD. HH hypobaric hypoxia, NH normobaric hypoxia, TA terrestrial altitude, SL sea level, AH acute hypoxia, CH chronic hypoxia. A, B, C
and D refer to the different trial arms of each study

Table 2 Studies investigating substrate utilisation during exercise matched for relative intensities in hypoxia compared with normoxia

Study Participants Study design Type of
hypoxia

Altitude (m) Duration
of exposure

Absolute substrate
use (g.min−1)

Relative substrate
use (%)

CHO oxidation Fat oxidation CHO oxidation Fat oxidation

Braun et al.
(2000) [11]

15
(females)

30 min cycling
at 65% relative
VO2max

TA 4300 10 days SL:1.95 ± 0.11
CH:1.22 ± 0.09

NM NM NM

Lundby and
Van Hall (2002)
A [22]

8
(male = 6,
female = 2)

60 min cycling a
t 50% relative
VO2max

NH 4100 70 min SL: 2.00 ± 0.20
AH: 1.70 ± 0.10

SL: 0.30 ± 0.01
AH: 0.20 ± 0.02

SL: 73.90 ± 2.00
AH: 75.50 ± 1.90

SL: 26.10 ± 2.00
AH: 24.50 ± 1.90

Lundby and
Van Hall (2002)
B [22]

8
(male = 6,
female = 2)

60 min cycling
at 50% relative
VO2max

TA 4100 10 days SL: 2.00 ± 0.20
CH: 1.70 ± 0.02

SL: 0.30 ± 0.01
CH: 0.30 ± 0.02

SL: 73.90 ± 2.00
CH: 74.40 ± 1.50

SL: 26.10 ± 2.00
CH: 25.60 ± 1.50

Matu et al.
(2017) A [6]

12 (males) 60 min walking
at 50% relative
VO2max

NH 2150 5 h SL: 1.56 ± 0.35
AH: 1.18 ± 0.34

SL: 0.41 ± 0.18
AH: 0.44 ± 0.21

SL: 62.80 ± 13.30
AH: 55.10 ± 18.90

SL: 37.20 ± 13.30
AH: 44.90 ± 18.90

Matu et al.
(2017) B [6]

12 (males) 60 min walking
at 50% relative
VO2max

NH 4300 5 h SL: 1.56 ± 0.35
AH: 0.87 ± 0.37

SL: 0.41 ± 0.18
AH: 0.38 ± 0.19

SL: 62.80 ± 13.30
AH: 50.80 ± 19.80

SL: 37.20 ± 13.30
AH: 49.20 ± 19.80

Morishima et al.
(2014) A [55]

8 (males) 30 min cycling
at 60% relative
VO2max

NH 2700 7.5 h NM NM SL: 60.00 ± 7.80
AH: 93.70 ± 2.50

SL: 40.00 ± 7.80
AH: 6.30 ± 2.50

O’Hara et al.
(2017) B [5]

7 (males) 105 min cycling
at ~ 74% relative
VO2max

HH 3375 155 min SL: 2.64 ± 0.50
AH: 1.47 ± 0.62

SL: 0.38 ± 0.19
AH: 0.63 ± 0.25

SL: 73.10 ± 13.10
AH: 48.80 ± 18.90

SL: 26.90 ± 13.10
AH: 51.20 ± 18.90

Peronnet et al.
(2006) [4]

5 (males) 80 min cycling
at 77% relative
VO2max

HH 4300 110 min SL:3.25 ± 0.13
AH:2.67 ± 0.10

SL:0.37 ± 0.05
AH: 0.10 ± 0.03

SL:78.10 ± 1.80
AH: 92.00 ± 2.10

SL: 21.90 ± 1.80
AH: 8.00 ± 2.10

Values presented as mean ± SD. HH hypobaric hypoxia, NH normobaric hypoxia, TA terrestrial altitude, SL sea level, AH acute hypoxia, CH chronic
hypoxia, CHO carbohydrate, NM not measured. A and B refer to the different trial arms of each study
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funnel plot and Egger’s regression intercept revealed lit-
tle evidence of small study effects (intercept = 3.25, 95%
CI: -4.34 to 10.84; p = 0.32).
There was no significant change in absolute fat oxidation

during exercise matched for relative intensities in hypoxia,
compared with normoxia (mean difference: − 0.03 g·min− 1,
95% CI: -0.11 to 0.05 g·min− 1; n = 6, p = 0.44; Fig. 4). The
degree of heterogeneity was found to be high between stud-
ies (I2 = 99.01%, Q = 506, τ2 = 0.01, df = 5). Sensitivity ana-
lysis revealed minor changes only, and these changes did
not substantially alter the overall mean difference.

Inspection of the funnel plot and Egger’s regression inter-
cept revealed that there was some evidence of small study
effects (intercept = − 5.96, 95% CI: -13.14 to 1.25; p = 0.08).

Risk of bias
Since many of the studies were high altitude expeditions,
certain biases were often unavoidable such as blinding of
participants and personnel (Fig. 5). However, it was
deemed that some of these biases could not affect the
outcome variable and were therefore classified as low
risk. In addition, all included studies were not clinically

Fig. 2 Forest plot of mean differences (means ± 95% CI) for studies investigating the effects of hypoxia on RER during exercise matched for
relative intensities. The size of the circle represents the relative weight of the trial. CIs are represented by a horizontal line through their
representative circles. The diamond quantifies the overall mean difference (means ± 95% CI). A, B, C and D refer to the different trial arms of each
study. Details of which are provided in Table 1
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registered, therefore it is not possible to determine if all
outcome variables were reported, therefore selective
reporting bias was listed as unclear.

Discussion
The purpose of this systematic review and meta-analysis
was to examine the effects of hypoxic exposure on

substrate oxidation during exercise matched to relative in-
tensities. There was no consistent change in relative
carbohydrate or fat contribution to energy provision dur-
ing exercise matched for relative intensities in hypoxia,
compared with normoxia. These findings are particularly
pertinent as, in contrast to exercise matched to absolute
intensities, exercise matched to relative intensities isolates

Table 3 Summary of moderator variables from the single and multiple meta-regression model for RER in response to hypoxic
exposure during exercise matched for relative intensities

Moderator variable

RER (relative) (n = 31)

p value Comparison Multiple regression
p value

Pre-existing nutritional state < 0.01 Fasted (n = 8, MD − 0.07, 95% CI − 0.09 to − 0.06)
Fed (n = 18, MD 0.06, 95% CI 0.01 to 0.10)

< 0.01

Carbohydrate supplementation
during exercise

0.22 Yes (n = 4, MD − 0.04, 95% CI − 0.09 to 0.01)
No (n = 27, MD 0.02, 95% -0.02 to 0.06)

N/A

Exercise mode 0.60 Cycling (n = 26, MD 0.02, 95% CI − 0.02 to 0.05)
Running (n = 5, MD − 0.01, 95% CI − 0.04 to 0.03)

N/A

Duration of hypoxic exposure 0.67 Acute (n = 22, MD 0.02, 95% CI − 0.03 to 0.06)
Chronic (n = 9, MD 0.00, 95% CI − 0.03 to 0.04)

N/A

Type of hypoxia 0.96 Simulated normobaric hypoxia (n = 7, MD 0.01, 95% CI − 0.01 to 0.03)
Simulated hypobaric hypoxia (n = 9, MD 0.00, 95% CI − 0.03 to 0.03)
Terrestrial altitude (n = 15, MD 0.02, 95% CI − 0.03 to 0.07)

N/A

Percentage male 0.43 Meta-regression percentage male vs. MD (slope 0.0006,
95% CI − 0.0009 to 0.0021)

N/A

Exercise intensity 0.04 Meta-regression of exercise intensity vs. MD (slope 0.0033,
95% CI 0.0002 to 0.0065)

0.049

Exercise duration 0.78 Meta-regression of exercise duration vs. MD (slope − 0.0002, 95%
CI − 0.0018 to 0.014)

N/A

Altitude height 0.90 Meta-regression of altitude height vs. ES (slope − 0.00, 95% CI − 0.00 to 0.00) N/A

Fig. 3 Forest plot of mean differences (means ± 95% CI) for studies investigating the effects of hypoxia on absolute carbohydrate oxidation
during exercise matched for relative intensities. The size of the circle represents the relative weight of the trial. CIs are represented by a horizontal
line through their representative circles. The diamond quantifies the overall mean difference (means ± 95% CI). A and B refer to the different trial
arms of each study. Details of which are provided in Table 2

Griffiths et al. Journal of the International Society of Sports Nutrition           (2019) 16:10 Page 9 of 14



the effect of hypoxia by normalising the exercise inten-
sities between conditions [22]. Additionally, the heteroge-
neous findings of the current literature may be explained
by a number of differing experimental characteristics, such
as pre-exercise nutritional status and exercise intensity.
There was no significant change observed in RER dur-

ing exercise matched for relative intensities in hypoxia,
compared with normoxia. In addition, there was no sig-
nificant change in relative carbohydrate or fat oxidation
in the same circumstances. It was deemed that RER was
the most useful outcome variable due the largest num-
ber of comparisons as a result of being the most fre-
quently reported in the literature. As expected, reduced

absolute carbohydrate rates were observed in hypoxia
during exercise matched to relative intensities, due to
the lower absolute workload [27] performed in hypoxia
than normoxia and the subsequent reduction in energy
expenditure. However, no significant change in absolute
fat oxidation was observed in hypoxia, likely due to the
limited changes in the contribution from this fuel source
at moderate (40–55% VO2max) exercise intensities [28].
The current review found that an increase in RER was

induced during exercise matched for relative intensities
in hypoxia compared with normoxia when participants
were in the fed state. Alternatively, a decrease in RER
was induced when in the fasted state. The increase in

Fig. 4 Forest plot of mean differences (means ± 95% CI) for studies investigating the effects of hypoxia on absolute fat oxidation during exercise
matched for relative intensities. The size of the circle represents the relative weight of the trial. CIs are represented by a horizontal line through
their representative circles. The diamond quantifies the overall mean difference (means ± 95% CI). A and B refer to the different trial arms of each
study. Details of which are provided in Table 2

Fig. 5 Assessment of risk of bias (Cochrane’s collaboration tool)
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endogenous carbohydrate stores as a result of feeding
may facilitate a hypoxic-induced physiological demand
for increased carbohydrate oxidation, thus potentiating
the fuel shift. The mobilisation and oxidation of these
stores may be augmented by the synergistic effect of
feeding [29] and hypoxia [3] on sympathetic nervous
system activity (i.e. increased secretion of epinephrine
and norepinephrine) and resultant increases in gluco-
neogenesis and glycogenolysis. Interestingly, recent evi-
dence also suggests that the rise in circulating insulin
concentrations after feeding may increase carbohydrate
oxidation from muscle glycogen stores, even before the
ingested carbohydrate has been transported into the
muscle [30]. This is supported by previous work demon-
strating a reduction in muscle glycogen concentrations
one-hour after consuming a mixed macronutrient meal,
before increasing again in the subsequent hours [31]. This
increase in insulin concentrations after a pre-exercise
meal may be potentiated by hypoxia [6], thereby enhan-
cing the inhibition of lipolysis and FFA mobilisation [32]
to increase carbohydrate oxidation. In contrast, fasted ex-
ercise may elicit a decrease in RER via the enhanced acti-
vation of PPARα due to both hypoxia [8] and fasting [33].
The synergistic effect of both factors may further disrupt
glycolysis [9] and enable greater fat flux [10].
In addition, an increased RER was observed during ex-

ercise matched to relative intensities in hypoxia, com-
pared with normoxia, during exercise performed at
higher intensities. This effect may be mediated by the
hypoxic effect of altitude and high intensity exercise,
augmenting skeletal muscle hypoxia [34]. The mecha-
nisms associated with these changes are likely explained
as per the physiological response to increased exercise
intensities in normoxic environments. In this regard,
higher exercise intensities induce a reduction in adipose
tissue blood flow, which may attenuate the release of
FFA resulting in decreased delivery to the contracting
muscle [35]. Further, greater exercise intensities stimu-
late greater flux through the glycolytic pathway and
pyruvate dehydrogenase complex (PDC) than flux
through the tricarboxylic acid cycle, resulting in the ac-
cumulation of acetyl coA [36]. The subsequent acylation
of the carnitine pool has been suggested to result in a
marked decrease in muscle free carnitine and downregula-
tion of carnitine palmitoyltransferase I (CPT-1), the en-
zyme responsible for transporting long chain fatty acids
into the mitochondrial matrix [28]. Alternatively, the ef-
fect of hypoxia on the sympathetic nervous system may be
potentiated by greater exercise intensities, enabling greater
carbohydrate oxidation due to increased glycogenolysis, a
result of enhanced glycogen phosphorylase activity,
sarcoplasmic Ca2+, inorganic phospohate and cyclic AMP
[37, 38]. Numerous mechanisms are proposed to explain
the reduction in FFA oxidation with increasing exercise

intensities [39], however detailed discussion of all theories
is out of the scope of this review.
The large between study heterogeneity in relation to

RER during exercise matched to relative intensities was ex-
plained in part by pre-exercise nutritional state and exer-
cise intensity (~ 42%). The remaining, unexplained
heterogeneity may highlight some limitations of the
present meta-analysis. Results from a meta-regression are
indicative of a between-study relationship, however due to
confounding bias (i.e. one experimental characteristic may
reflect a true association with other correlated, known or
unknown characteristics), this relationship may not be
replicated within-studies. This is termed aggregation bias.
As such, moderator analysis should be regarded as hy-
pothesis gathering, rather than hypothesis testing [40].
These moderators should therefore subsequently be inves-
tigated using a within-measures design via randomised
controlled trials, generating causal, rather than observa-
tional relationships. Further, the unexplained heterogeneity
may be due to methodological heterogeneity (i.e. study
quality/measurement error) or insufficient trials to gener-
ate the appropriate power to fully explain the heterogen-
eity. A greater quantity and quality of research regarding
substrate oxidation during hypoxia would help to further
explain the heterogeneity between trials Further research
is required to confirm the findings from this meta-analysis
and quantify the influence of the fasted and fed state and
exercise intensity on substrate utilisation in hypoxia.
The present meta-analysis provides clarity, and therefore

facilitates an accurate interpretation, of the current litera-
ture. These findings may inform nutritional strategies for
mountaineers, military personnel and athletes during ex-
posure to altitude, subsequently limiting the detrimental
exercise performance experienced in such conditions. The
performance benefits of maintaining exogenous carbohy-
drate oxidation and/or endogenous carbohydrate stores
via pre-exercise carbohydrate consumption in normoxia
are well documented [41]. As such, findings from this re-
view suggest that a physiological drive for carbohydrate
oxidation in hypoxia may be facilitated by an increased
carbohydrate intake prior to exercise, in order to avoid an
accelerated depletion of muscle glycogen, and shift back to
the less efficient oxidation of fat [35]. In contrast, the use
of low carbohydrate intake strategies to enhance endur-
ance training metabolic adaptations is growing in popular-
ity [42] and findings from the present meta-analysis may
have implications for such strategies. Specifically, the com-
bined effect of training in hypoxia in a glycogen depleted
state may potentiate the metabolic adaptations of ‘training
low’. Alternatively, a number of studies have demonstrated
that changes in substrate utilisation during exercise in
hypoxia may have implications for metabolic disease pro-
grammes [43, 44]. As such, the clinical translation of the
current study warrants further investigation.
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Despite the important findings observed in the current
meta-analysis, some notable limitations must be ac-
knowledged. First, the equivocal findings observed in
RER and relative substrate oxidation reflects the hetero-
geneity in the literature, rather than an absence of
change in substrate oxidation due to hypoxic exposure.
This heterogeneity is likely due to differing experimental
characteristics between studies and although moderator
analysis was employed to identify these factors, these
findings should be interpreted with caution. Second, the
physiological determinants of substrate oxidation (e.g.
hormonal factors), were not quantified and therefore
physiological mechanisms were difficult to elucidate. This
was, however, beyond the scope of this study. Finally, des-
pite an extensive search returning 1743 records, we can-
not guarantee that our search was completely exhaustive
of the relevant literature. However, should the primary or
secondary aim of a study be related to this area, they are
likely to have been detected in our search.

Conclusions
This meta-analysis did not demonstrate a consistent
change in relative carbohydrate or fat contribution to en-
ergy provision during exercise matched for relative inten-
sities in hypoxia, compared with normoxia. These findings
reflect the heterogeneity in the current literature. A meta-
bolically efficient shift to carbohydrate oxidation may be
induced by consumption of a pre-exercise meal and a
higher exercise intensity. A significant amount of
between-study heterogeneity could not be explained by
the moderators used in this meta-analysis, highlighting
the need for future research to further investigate modera-
tors of this effect in a randomised and controlled fashion.
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