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Beta-hydroxy-beta-methyl-butyrate blunts
negative age-related changes in body
composition, functionality and myofiber
dimensions in rats
Jacob M Wilson1,2, Samuel C Grant3, Sang-Rok Lee1, Ihssan S Masad3,5, Young-Min Park1, Paul C Henning1,4,
Jeffery R Stout6, Jeremy P Loenneke7, Bahram H Arjmandi1, Lynn B Panton1 and Jeong-Su Kim1*

Abstract

Purpose: To determine the effects of 16 wk. of beta-hydroxy-beta-methylbutyrate (HMB) administration on age-
related changes in functionality and diffusion tensor imaging (DTI) determined myofiber dimensions.

Methods: Twelve young (44 wk.), 6 middle-aged (60 wk.), 10 old (86 wk.), and 5 very old (102 wk.) male Fisher-344
rat’s body composition and grip strength were assessed at baseline. Following, 6 young, 6 middle-aged, 5 old and
5 very old rats were sacrificed for baseline myofiber dimensions and gene transcript factor expression in the soleus
(SOL) and gastrocnemius (GAS). The remaining 6 young and 5 old rats were given HMB for 16 wk. and then
sacrificed.

Results: Fat mass increased in the middle-aged control condition (+49%) but not the middle-aged HMB condition.
In addition, fat mass declined (-56%) in the old HMB condition but not the old control condition. Normalized
strength declined and maintained respectively in the control and HMB conditions from 44 to 60 wk. and increased
(+23%) (p < 0.05) from 86 to 102 wk. in only the HMB condition. Declines occurred in myofiber size in all muscles
from 44 to 102 wk. in the control condition(-10 to -15%), but not HMB condition. Atrogin-1 mRNA expression in
the SOL and GAS muscles was greater in the 102-wk control condition than all other conditions: SOL (+45%) and
GAS (+100%). This elevation was blunted by HMB in the 102 wk. old SOL. There was a condition effect in the SOL
for myogenin, which significantly increased (+40%) only in the 102-wk. HMB group relative to the 44-wk. group.

Conclusions: HMB may blunt age-related losses of strength and myofiber dimensions, possibly through
attenuating the rise in protein breakdown.
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Backgrounds
In the 20th century, the United States experienced a
57% increase in lifespan (from 49.2 to 76.5 years) [1].
With continued growth per annum life expectancy is
projected to rise to approximately 80 and 84 years of
age in women and men, respectively, by the year 2050
[1]. It has been shown that there is a 30% loss of muscle
tissue that occurs from the 5th to 8th decade of life [2].

This progressive age-related loss of muscle tissue,
strength, and function is termed sarcopenia [3]. Sarco-
penia is associated with a greater likelihood of disability,
functional impairment in activities of daily living [4,5],
increased incidence of falls, insulin resistance [6], and
hip fractures [7]. Each of these factors appears to contri-
bute to a projected doubling of 65 year olds becoming
limited to nursing homes by 2020 [1]. It is projected
that as individuals aged 65 years or older increase from
13% to 20% of the population from 2000 to 2020, a par-
alleled 2 to 6 billion dollar increase in hip fracture
expenditures is projected to occur [7]. Therefore, a
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better understanding of the factors that cause slow or
possibly reverse sarcopenia is critical for improving the
quality of life in elderly populations, as well as blunting
the estimated increase in health care costs.
Within the last decade, long-term essential amino acid

(EAA) supplementation has been demonstrated to serve
as a possible treatment and/or prevention for the muscle
loss associated with aging [8-13]. Leucine has been
found to be a crucial component within the EAA com-
plex to possibly attenuate the progression of muscle
wasting [10,12]. One of reasons that leucine may attenu-
ate muscle wasting comes from its conversion to beta-
hydroxy-beta-methylbutyrate (HMB) [14]. However,
only 5% of leucine is metabolized into HMB [15]. Thus,
an individual would need to consume 60 to 120 g of
leucine in order to obtain the most frequently adminis-
tered dosages (3 to 6 g, respectively) for this supplement
in research studies. HMB has attenuated muscle wasting
in numerous clinical situations including those involving
cancer [16-19], human caloric restriction [20], and limb
immobilization [21]. HMB also has been found to coun-
ter age-related losses in limb circumference [9], upper
and lower body strength [8], and functionality in activ-
ities of daily living [9]. Moreover HMB has been demon-
strated to signal the simultaneous increase and decrease
in protein synthesis and proteolysis in both aging and
clinically cachexic conditions [16,22]. Given HMB’s
capacity to subsequently enhance and depress anabolic
and catabolic pathways [16,22], HMB would be a good
candidate as a dietary supplement to partially reverse
deficits in net anabolism in sarcopenic muscle following
RET.
To our knowledge, no research has investigated the

effects of HMB on age-related changes in muscle cell
(myofiber) size. Moreover, no study to date has com-
pared and contrasted if differential responses exist
between young and older individuals to HMB consump-
tion. Therefore, the primary aim of this study was to
determine the effects of 16 wk. of HMB administration
in young and old rats on age-related changes in body
composition, functionality, and myofiber dimensions
using advanced ex vivo magnetic resonance (MR) ima-
ging techniques and the potential molecular mechan-
isms mediating these effects.

Methods
Animals and overview of experiment
All procedures in this study were approved by our insti-
tutions Animal Care and Use Committee. Fourteen
young (44 wk.), 7 middle aged (60 wk.), 14 old (86 wk.),
and 7 very old (102 wk.) male Fisher 344 rats were used
in the study. However, death due to the aging process
as well as general anesthesia during various imaging
processes resulted in a remainder of 12 young (44 wks.),

6 middle aged, which served as the control (60 wk.), 10
old (86 wk.), and 5 very old, which served as the control
(102 wk.) animals that completed the study (see Figure
1 for timeline), which still met the criteria for our origi-
nal sample size determination (see power analysis
below). Each animal was assessed for functionality (grip
strength and motor performance using incline plane) as
well as lean, fat, and total body mass using dual-energy
X-ray absorptiometry (DXA) pre- and post-treatment
(see Figure 1 for experimental design). After baseline
measures, 6 young, 6 middle aged control, 5 old, and 5
very old control rats were anesthetized and their right
gastrocnemius (GAS) and soleus (SOL) muscles were
isolated, blotted, and quickly frozen in liquid nitrogen
for later in vitro molecular analysis. After isolating mus-
cles from the right hind limb, a cardiac perfusion proto-
col was implemented to drain blood from the rat’s body.
Following, the left GAS and SOL muscles of the rats
were harvested and directly immersed in 4% paraformal-
dehyde for an ex vivo analysis of myofiber dimensions.
Remaining young (44 wk.) and old (86 wk.) rats were
given HMB (0.46 g/kg/d) for 16 wk. After the supple-
mentation period, the remaining rats were assessed for
post-treatment measures in body composition and func-
tionality and then sacrificed for in vitro molecular and
ex vivo MR analyses.

HMB administration
All animals were raised in our laboratory prior to
experimentation, therefore giving us a strong basis for
how much HMB should be added to their food. Typi-
cally, daily food consumption values ranged from 15-25
g/day for a 250 g rat (or 60-100 g feed/kg BW). Based
on their average diet, the HMB dosage was calculated as
~1% CaHMB (Metabolic Technologies Inc., Ames, Iowa,
USA), to achieve an ~0.50 g HMB/kg BW/daily dose

Day 1: 

DXA & 
Functionality 

Measures

AGE OF FISHER 344 
RATS

Young: 44 wks
Middle Aged: 60 wks
Old: 86 wks
Very Old: 102 wks
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CHO  PRO  FAT  HMB2  

Control 54%  16%  30%  0 %  
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Figure 1 Schematic of experimental timeline for the
experiment.
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[20]. Based on previous human studies, and assuming a
rodents metabolism are at least 6 times more than
humans, we chose a 6 gram metabolic equivalent HMB
intervention (the upper limit given to humans in
research [23]) and calculated a human-to-rodent conver-
sion to provide an appropriate, and safe dosage for each
animal [20]. Daily food consumption of rats was mea-
sured every 6th day by weighing the food remaining and
subtracting it from the amount that was administered.
Upon termination of this study, the average kilocalories
(kcals) for total food consumed, as well as for each
macronutrient, were calculated.

Body composition
Dual-energy X-ray absorptiometry (DXA) was per-
formed using a Lunar QDR system (iDXA, Lunar Corp.,
Madison, Wisconsin, USA) with specific software (ver-
sion V8-19a) and an internal standard adapted for small
animal scans. Total body mass (TBM), lean body mass
(LBM), and fat mass (FM) were measured on all ani-
mals’ pre and post 16 wk. of HMB administration.

Functionality measures
The grip strength test was used as a measure of limb
strength [24]. In this procedure, the rats were positioned
in front of a force gauge (DFS-101 Force gauge, AME-
TEK TCI, CA, USA) so that they could grasp the ten-
sion sensitive steel bar of the device with their
forelimbs. After visual observation of gripping, the
researcher gently pulled back on the rat’s tail until it
released its hold on the bar. Force produced was mea-
sured in grams. Three trials were performed by the
same experienced investigator for each rat throughout
the study for consistency and the greatest force was
recorded as maximum grip strength, which was then
normalized to body mass of each rat.
The inclined plane test was used to assess sensory

motor function and hind limb strength [25]. Perfor-
mance was determined as the rats’ ability to maintain
their body position for 5 sec on an inclined plane, while
the angle of the surface was changed from 20° to 60° at
2° intervals, with a rest period of at least 5 min.

Muscle isolation
Both right and left hind limb muscles were collected in
the National High Magnetic Field Laboratory (NHMFL):
one for in vitro molecular analysis and the other for MR
analysis. Following anesthesia, precise surgical methods
were used to excise the GAS and SOL muscles from the
hind limb. Muscles were then frozen in liquid nitrogen.
Prior to removing the left calf muscles, a cardiac perfu-
sion protocol was implemented to drain blood from the
rat’s body since it could interfere with the clarity of the
imaging process.

Diffusion tensor imaging (DTI) analysis for myofiber
dimensions
For this study we were able to utilize the MR technique
termed Diffusion Tensor Imaging (DTI) analysis to study
muscle cell architecture at the NHMFL. DTI is based on
the principle that the cellular diffusion of water corre-
sponds to cell geometry in muscle. The advantage of DTI
concerns the ability of random diffusion of water mole-
cules to probe with far greater detail then general ima-
ging techniques [26,27]. Unlike biopsy techniques, DTI is
able to provide the average myofiber dimensions of an
entire muscle, as opposed to a small sample of the mus-
cle. Part of the DTI analysis involves calculating the
mean diffusion of water within a muscle fiber (termed
apparent diffusion coefficient, ADC), fractional aniso-
tropy (FA) and the 3 principle directions of water diffu-
sion denoted as Eigen vectors 1, 2 and 3, representative
of the local fiber coordinate system [26,27]. The diffusive
transport along the 3 principle directions are denoted as
eigenvalues 1, 2, and 3 (l1, l2, and l3) which correspond
to diffusive transport along the long axis, as well as the
long and short cross-sectional axes of the muscle fibers,
respectively [28] (Figure 2). FA is a general measure of
the differences in the magnitude of diffusion between the
3 principle directions of diffusion. With smaller cross
sectional areas (CSA), FA increases while larger cross
sectional areas decrease FA. Thus, FA is inversely pro-
portional to myofiber size [26,27].
DTI datasets of the muscles in 7-noncollinear gradient

directions were acquired using a widebore 11.75-T verti-
cal magnet with a Bruker Avance console and Micro2.5
gradients. Using a 15-mm birdcage coil, spin echo DTI
scans were acquired with b values of 0, 500, and 1000 s/
mm2 at an in-plane resolution of 50 × 50 μm2 and a
slice thickness of 500 μm. The DTI acquisition para-
meters were as follows: TE = 20.5 ms, TR = 2.75 s, Δ =
12.7 ms and δ = 2.1 ms. Also, a high resolution (40-
μm3) 3D gradient-recalled echo (GRE) image was
acquired (TE/TR = 10/150 ms) for anatomical and volu-
metric measurements. After acquisition, the images
were processed with MedINRIA http://wwwsop.inria.fr/
asclepios/software/MedINRIA/ to calculate diffusion
tensor parameters such as: FA, and l1, l2 and l3. The
region of interest (ROI) was chosen in the widest region
of the GAS and SOL muscle for processing as shown in
Figure 3.

Semi-quantitative reverse transcription polymerase
reaction (RT-PCR)
As previously described in detail we used a relative RT-
PCR method using 18S ribosomal RNA as an internal
standard was used to determine relative expression
levels of target mRNAs [29]. We designed each set of
forward and reverse primers using DNA Star Lasergene
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7 software. All primer sets have been previously tested
for optimal conditions. For each PCR reaction, 18S
(with a 324-bp product) was co-amplified with each tar-
get cDNA (mRNA) to express each as a ratio of target
mRNA/18S. Images were captured under UV, and
mRNA expressions were analyzed via the Bio-Rad Che-
miDoc™ XRS imaging system and the Bio-Rad Quanti-
tyOne® software (Bio-Rad Laboratories, Hercules, CA,
USA) as described previously [29].
mRNA expression of 4EBP1 was used as a negative

marker of protein synthesis, while the E3 ligase atrogin-
1 was used as a positive regulator of protein degrada-
tion. Mitogenic factors, IGF-IEa and its isoform IGF-IEb
(mechano growth factor (MGF)), were used as positive
regulators of mitogenesis and myogenesis. Myostatin
and its receptor activin IIB were measured as negative
regulators of myogenesis. Muscle cell regeneration was

analyzed by transcriptional levels of the myogenic regu-
latory factors (MRFs): myogenin and myogenic differen-
tiation factor (MyoD).

Statistical analysis
Lean body mass, FM, TBM, functionality (grip strength
and incline plane, MR-determined myofiber dimensions
and target genes associated with myofiber size were ana-
lyzed using one way ANOVA across six groups includ-
ing 1 young baseline (44 wks), 2 middle aged (60 wks,
control and HMB), 1 old (86 wks.), and 2 very old (102
wks. control and HMB) groups using Statistica (Stat-
Soft®, Tulsa, OK, USA) (Figure 1). Significance was set
at p ≤ 0.05, and a tukey post hoc analysis was used to
determine which specific mean values differed from
others for each variable. The overarching goal of this
project was to use MR to examine the impacts of age

Figure 2 Diffusion tensor imaging (DTI) of Rat Skeletal Muscle with Regions of Interest for the analysis. Soleus muscle is marked with
blue, while lateral and medial gastrocnemius muscles are marked with red and green, respectively.
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and HMB on skeletal muscle cells during the aging pro-
cess. Myofiber size was therefore one of the primary
outcome measures in this project and provided the basis
for the sample sizes as determined by the G*Power ana-
lysis software [30,31]. Our rationale for sample size was
based on a study by Payne et al. [32]. These investiga-
tors found that Fisher 344 rats 102 wks of age demon-
strated significant atrophy in the soleus than young
adult animals (Effect size (ES) of 3.7). Based on an alpha
level of 0.05, a power of 80 and an ES of 3.7, a total of
30 rats (5 per experimental group) were needed to have
sufficient power to detect age related changes in myof-
ber dimensions.

Results
Food and HMB consumption
All values for food consumed are presented in Table 1.
Average total Kcals and Kcals for carbohydrates, protein,
and fat were not different between groups.

Body composition
There were no condition effects for LBM. In regards to
FM, there were significant condition (p ≤ 0.05, ES = 0.5)

effects, with greater FM (g) in the middle aged (60-wk)
control (+49%) but not in the middle aged HMB condi-
tion, compared to the baseline young animals (Figure 3).
Moreover, FM was significantly lower (-56%) in the very
old HMB (102-wk) but not in the control condition
compared to the 86 wk. old baseline animals.

Functionality measures
All test reliability scores for functionality were above .9.
There were significant condition (p ≤ 0.05, ES = 0.7)
effects for normalized grip strength in which strength
was lower in the control condition, but was maintained
in the HMB condition when comparing 44 to 60 wks. of
age animals (Table 2). In old animals, normalized
strength increased by 23% (p < 0.05) when comparing
86 to 102 wks. of age with HMB, with no change in the
control condition. There was a condition effect (p ≤
0.05, ES = 0.4) for incline plane performance, which was
greater in the 60 wk hmb condition than 44 wk condi-
tion, but was not different than baseline in the 60 wk
control condition. Both old groups declined in incline
plane performance relative to the 44 wk baseline group
of animals.

Diffusion tensor imaging determined myofiber
dimensions
We analyzed the GAS and SOL muscles and calculated
the DTI parameters for those muscles (Figure 4). Frac-
tional anisotropies (FA), apparent diffusion coefficients
(AP), and eigenvalues [33] 1, 2, and 3 were investigated.
There was a main condition effect for FA for the GAS
(Figure 4A) (p ≤ 0.05, ES = 0.5) and SOL (Figure 4B)
(p ≤ 0.05, ES = 0.5) muscles (Figure 4). Post hoc analysis
revealed that while FA was significantly greater in the
102-wk control from both 44 and 86 wk., the 102-wk
HMB condition only differed from 44 wk. No changes

Table 1 Average Kcal consumption for among conditions

Kcals Kcals (CHO) Kcals (PRO) Kcals (Fat)

44 wks Baseline 67.3 ± 4.1 38.9 ± 2.4 19.2 ± 1.2 9.0 ± 0.6

60 wks Control 66.8 ± 1.8 38.7 ± 1.1 19.0 ± 0.5 8.9 ± 0.3

60 wks HMB 65.9 ± 1.5 38.2 ± 0.9 18.7 ± 1.2 8.8 ± 0.6

86 wks Baseline 62.3 ± 6.5 35.5 ± 3.64 17.4 ± 2.0 8.2 ± 0.9

102 wks Control 62.5 ± 5.8 36.1 ± 2.4 17.8 ± 1.0 8.4 ± 0.5

102 wks HMB 63.2 ± 6.19 36.8 ± 3.6 18.1 ± 1.8 8.5 ± 0.8

Table 2 The Effects of Aging and HMB on Neuromuscular
Function

Normalized Grip
StrengthA

Incline Plane (angle in
degrees)A

44 wks
Control

4.5 ± 0.7 45.2 ± 1.7

60 wks
Control

3.6 ± 0.3*$ 47.6 ± 2.1

60 wks HMB 4.2 ± 0.4 51.0 ± 2.7*#

86 wks
Control

3.3 ± 0.6*$@ 40.0 ± 1.6*#$

102 wks
Control

3.2 ± 0.6*$@ 41.0 ± 1.6*#$

102 wks HMB 3.8 ± 0.5* 40.2 ± 1.7*#$

A indicates a main condition effect. * indicates p < 0.05, significantly different
from 44 wks, $ indicates p < 0.05, significantly different from 60 wks HMB, #
indicates p < 0.05, significantly different from 60 wks control, @ indicates p <
0.05, significantly different from 102 wks HMB

Figure 3 Changes in fat mass among control and HMB
conditions in young and older F344 rats. Values are means ±
standard deviations. A p < 0.05, main condition effect. * p < 0.05,
significantly different from 44 wks baseline, $ significantly different
from 86 wks baseline old.
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in FA occurred from 44 to 60 wk. in any of the condi-
tions. There was a main condition effect for the GAS (p
≤ 0.05, ES = 0.4) and SOL (p ≤ 0.05, ES = 0.4) muscles
for l 2, indicative of myofiber CSA. There was also a
main condition effect in the GAS (p ≤ 0.05, ES = 0.4)
and SOL (p ≤ 0.05, ES = 0.4) muscles for l 3, also

indicative of myofiber CSA. Post hoc analysis revealed
that l 2 was lower (p ≤ 0.05) in the SOL and GAS in
the 86-wk and 102-wk control group. In addition l 3
declined in the SOL of the 86-wk old condition, and in
all muscle groups in the 102-wk control group. How-
ever, no changes occurred in the 102-wk HMB

Figure 4 Comparison of gastrocnemius and soleus muscle DTI data with or without HMB in young and older F344 rats. A indicates a
main condition effect (p < 0.05), * indicates a significant difference from the 44-wk group (p < 0.05), # p < 0.05, significantly different from 86
wk group, $ p < 0.05, significantly different from 102 wk HMB group.
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condition or any of the 60-wk conditions for any muscle
analyzed. In the GAS, both l 2 and 3 were greater in
the 102-wk HMB than non-HMB condition. No condi-
tion effects were found for ADC, or l 1, representative
of diffusion in the longitudinal axis of the myofibers in
any of the muscles analyzed.

Semi-quantitative reverse transcription polymerase
reaction
Regulators of protein turnover
No significant condition effects were found for either
the SOL or GAS muscles for 4EBP-1 mRNA expression
(Figure 5). However, there were significant condition
effects for both the soleus (p ≤ 0.05, ES = 0.5) and gas-
trocnemius muscles (p ≤ 0.05, ES = 0.6) for atrogin-1
mRNA expression. There were condition effects for all
muscles for atrogin-1, which was greater in the 102-wk
control than all other groups in both the soleus (+ 45%)
and gastrocnemius (+100%) muscles. However, the rise
was blunted in the soleus in the 102-wk HMB condition.
Positive and negative regulators of mitogenesis
Myostatin mRNA expression was too low in the soleus
to process data. For the remaining data sets, no main
effects were found for IGF-I, MGF, myostatin, or activin
RIIB in any muscles analyzed (Figure 6).
Regulators of myogenesis
There were no main effects in the soleus or gastrocne-
mius for MyoD, or for the gastrocnemius in myogenin
(Figure 7). However, there was a main group effect in
the soleus for myogenin (p ≤ 0.05, ES = 0.3) which
while approaching significance in the 102-wk control
group (p = 0.056) only significantly increased in the
102-wk HMB group relative to the 44-wk group.

Discussion
The primary aim of the present study was to determine
the effects of 16 wk. (approximately 15-16% of F344 rats

normal lifespan) of HMB administration in young and
old rats on age-related changes in body composition,
myofiber dimensions, strength, and incline plane func-
tion. The major findings of this study were that HMB
blunted negative age-related changes in body composi-
tion and muscle cellular dimensions.

Body composition
Results indicated no changes in LBM when comparing
young to old rats. Our results agreed with Yu et al. [34]
who also found that LBM did not change from young to
old age in F344 rats. However, it is possible that the
DXA measure of LBM in rats was not sensitive enough
to detect age-related sarcopenia, and it’s possible that
the cross sectional design underestimates these changes.
In general, both human and rodent models have shown
to underestimate age-related changes in muscle mass
when done in cross sectional designs relative to longitu-
dinal designs [35-37]. Our old animals were raised in
our laboratory from 44 to 86 weeks of age. While the
HMB group continued (16-wk administration) until very
old age (102 wk.), the control group was sacrificed at 86
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Figure 5 Regulators of protein balance in the gastrocnemius
and soleus muscles. A indicates a main group effect (p < 0.05), *
indicates a significant difference from the 44-wk group (p < 0.05).
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Figure 6 Regulators of Mitogenesis in the gastrocnemius and
soleus muscles. * indicates a significant difference from the 44-wk
group (p < 0.05).
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Figure 7 Regulators of Myogenesis in the gastrocnemius and
soleus muscles. * indicates a significant difference from the 44-wk
group (p < 0.05).
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wk. of age. Therefore, we performed a quazi-longitudinal
comparison between the groups, in which a separate
group of 5 control animals were used at 102 wk. in
place of those 5 sacrificed at 86 wks. Intriguingly, both
groups significantly declined in LBM from 44 to 86 wks.
of age, and while this loss was maintained in the old
control group, the 102-wk HMB group was no longer
significantly lower in LBM than when they were 44 wk.
of age (Figure 8). Baier et al. [38] also performed a long-
itudinal analysis in over 70 elderly women with an aver-
age age of 76 years of age. These subjects were
randomly divided into either a cocktail containing HMB
or placebo supplemented groups for a 12-month dura-
tion. Their results indicated that LBM progressively
increased over a 12-month time span when supplement-
ing with the nutrition cocktail with no change occurring
in the placebo condition.

Fat mass (FM)
In both humans and the Fisher 344 rat model, FM
increases up to 70% of the lifespan, and then plateaus or
decreases thereafter [39,40]. In our control rats, FM
increased from young to middle age, with no changes
occurring from old to very old age. Perhaps the most
intriguing finding of our study was that HMB prevented
fat gain from young to middle age, and significantly low-
ered body fat after the 16-wk HMB administration from
the old to very old age. Our results also concur with
past animal research, which demonstrated significantly
lower hindlimb fat pad weight following HMB

administration in both healthy and dystrophic mice [41].
Interestingly enough, these changes were independent of
food intake, which agreed with past research indicating
that grams of food consumed may not significantly
change with age in the F344 rat model [42], nor with
HMB supplementation. To date, the underlying
mechanisms that HMB exerts its effects on adipose
remain to be elucidated. It may be that HMB directly
increases oxidative capacity in myofibers, as exposure of
cultured myotubes to the leucine metabolite increased
palmitate oxidation by 30% [43].

Muscle strength and sensory motor function
The present study employed a direct measure of grip
strength [24], as well as the incline plane test, which has
been previously utilized to study both sensory motor
function and whole body strength [25]. Sensory motor
function is a combination of not only muscle strength,
but motor unit recruitment and rate of muscle contrac-
tion [44]. For example, recovery of balance following
sudden perturbations requires a quick and powerful
reflex response to overtake the falling momentum [45].
There was an overall decline in grip strength from 44 to
102 wk. of age. When normalized to body mass how-
ever, grip strength declined from 44 to 60 wk. only in
the control, but not in the HMB condition. Moreover,
normalized grip strength increased by 23% in the old
HMB condition from 86 to 102 wk. of age.
In addition, incline plane performance increased from

young to middle aged rats that were administered HMB.
Our results on overall functionality concur with Flakoll
et al. [9] who previously demonstrated that 12 wk. of a
cocktail containing HMB (also contained Arginine and
Lysine) significantly increased grip strength, leg exten-
sion force, as well as get up-and-go performance in
older adults. Finally, changes in functionality and
strength without detectable changes in LBM may indi-
cate an increase in muscle quality. However, this is cur-
rently speculative and would need to be verified by
future research.

Myofiber dimensions
Previous research with HMB supplementation has been
restricted to indirect measures of muscle tissue which
include caliper measurements [46,47], DXA analysis
[38,48], and limb circumference measures [9]. However,
the hallmark of sarcopenia is a decline in muscle mass
and then ultimately in myofiber dimensions. To our
knowledge, our study is unique as we are the first to
view actual changes in muscle cellular dimensions fol-
lowing HMB administration throughout senescence. In
particular, we employed the diffusion tensor imaging
(DTI) technique, which uses a powerful magnet at the
NHMFL. This technique has been validated for studying

Figure 8 Quazi longitudinal analysis of lean body mass in
young (44 wk) to very old (102 wk). Fisher 344 rats. A indicates a
main condition effect (p < 0.05), * indicates a significant difference
from the 44-wk group (p < 0.05).
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changes in myofiber dimensions including myofiber
length and cross sectional area (CSA) following ischemia
reperfusion injury [26,49,50]. As predicted, no changes
occurred in myofiber dimensions from 44 to 60 wk. of
age. While sarcopenia was evident in the 86-wk and
102-wk control conditions, both l 2 and l 3, indicative
of myofiber CSA were relatively maintained in the
soleus and gastrocnemius muscles of rats consuming
HMB. Our results are consistent with previous work
from Flakoll [9] and Bair et al. [38] who found that a
cocktail containing HMB was able to counter age-
related losses in limb circumference. These results are
also consistent with several additional muscle wasting
models which demonstrated HMB could blunt muscle
loss during sepsis [51], cancer [16], limb immobilization
[21], and in critically ill trauma patients [52].

Transcript factors associated with myofiber size
Perhaps the most studied aspect of HMB is its effects on
protein breakdown. The first research conducted was in
humans, which demonstrated that HMB could signifi-
cantly lower 3-methylhistadine following strenuous
bouts of exercise [23]. However, only recently have its
mechanisms of action been elucidated. The current
study analyzed atrogin-1, an E3 ligase in the Ubiquitin
pathway, which is commonly elevated in muscle wasting
conditions such as aging [53,54]. We found that HMB
was able to attenuate the age-related rise in atrogin-1
mRNA expression in the soleus muscle. This is impor-
tant as atrogin-1 mRNA expression has been demon-
strated to be a predictor of long-term changes in
proteolysis and muscle wasting [55-57]. Moreover past
research has found gene expression of atrogin-1 to be
elevated in aging muscle tissue [55,56]. While our
research analyzed HMB’s effects on transcription of
components of the Ubiquitin pathway, researchers in
the Tisdale laboratory have studied direct activity of the
Ubiquitin pathway [16,22]. These researchers found that
HMB decreased proteasome activity, expression of both
alpha and beta subunits of the 20s chamber, and the
ATPase subunits of the 19 s caps.
Previous research from Baier and colleagues [38]

found that whole body protein synthesis increased up to
14% during a 12-month period when subjects consumed
an HMB containing cocktail. We looked at the effects of
HMB directly in skeletal muscle on 4EBP-1 gene expres-
sion, the inhibitory binding protein that prevents forma-
tion of the eukaryotic initiation factor 2F complex
which is rate limiting to translation initiation [58]. We
did not see any aging or supplement effects on 4EBP-1.
Our results agreed with Kovarik et al. [51] who found
that HMB was able to attenuate a sepsis induced protein
catabolic state in rat skeletal muscle primarily by blunt-
ing an increase in proteolysis, without preventing a

decline in protein synthesis. However, a more recent
study by Pimentel et al. [59] found that while HMB sup-
plementation increased total mTOR protein expression,
and phosphorylation of ribosomal protein s6 kinase
(p70s6k) in healthy rats, that it was not able to increase
the total protein expression of p70S6K. Thus the com-
bined results from protein and gene changes from
Pimental et al. [59] and our current study, respectively,
may indicate that HMB does not directly regulate the
expression of these two downstream targets of mTOR.

Positive and negative regulators of mitogenesis and
myogenesis
In our previous research with old female rats, we found
that IGF-IEa mRNA expression was increased in a
group administered HMB during 10-wk resistance train-
ing [60]. The current study found no significant main
effects for myostatin, MGF, or IGF. However, past
research found that the addition of HMB to serum-
starved myoblasts increased IGF-I mRNA in a dose
dependent manner. It is possible that the more robust
effects seen in cell culture are due to a greater overall
direct exposure of myocytes to HMB, as this study con-
firmed that HMB’s effects on IGF-I were dose depen-
dent. However, future research will need to be
conducted to examine if higher doses elicit differential
responses in animal studies.
MyoD and myogenin were taken as early and late reg-

ulators of satellite cell differentiation, respectively [61].
Our results showed a main group effect for myogenin in
the soleus. However, this regulator of differentiation
only significantly increased in the 102-wk. HMB condi-
tion, and not in the 102-wk. control condition. While it
is tempting and certainly possible to suggest that HMB
was at least partially responsible for this increase, it is
more easily explained by a compensatory process
accompanying the aging process [62] as the control con-
dition very closely approximated a significant rise as well
(p = 0.07).

Conclusions
The prevalence of sarcopenia simultaneously increases
along with the percentage of older individuals. It is
often difficult to find an intervention that is adhered to
by the elderly population than could possibly blunt this
phenomenon. However, the results of our present study
in sedentary rats indicate that HMB may prove effica-
cious in blunting deleterious changes in muscle mass
and myofiber dimensions with age. Our findings of
improved functionality with HMB also support previous
findings observed in humans. Moreover, our findings
demonstrate that HMB may have a catabolic effect on
adipose tissue (fat mass), although underlying mechan-
isms in fat metabolism remain to be elucidated. While
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our study only began to elucidate the mechanisms this
supplement works through, we did find that it lowered
the E3 ligase atrogin-1, which is involved in a rate-limit-
ing step in Ubiquitination of target substrates for degra-
dation. It is suggested that future studies look directly at
changes in myofiber growth with an in vivo MR DTI
technique on the same animals over time concurrently
analyzing changes in protein content of its regulators.
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