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L-leucine, beta-hydroxy-beta-methylbutyric acid
(HMB) and creatine monohydrate prevent
myostatin-induced Akirin-1/Mighty mRNA
down-regulation and myotube atrophy
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Abstract

Background: The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine
monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes.

Methods: After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and
four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea,
4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following
treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET
method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related
genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1).

Results: MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and
Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN
treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared
to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking
MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN+ HMB myotubes had similar
Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited
a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated
myotubes, respectively.

Conclusions: Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA
expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect
Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy
in vivo.
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Background
Myostatin (MSTN) is a key negative regulator of mature
skeletal muscle myofiber growth [1-3]. In this regard,
MSTN has been shown to reduce muscle protein synthesis
by abrogating mTORC1 signaling [4,5] and increase muscle
proteolytic mechanisms [6,7]. Furthermore, several studies
have implicated physical inactivity-induced up-regulation in
MSTN as a potential regulator in age-related skeletal
muscle loss [8-13], and there is supporting evidence sug-
gesting that serum and skeletal muscle MSTN are elevated
with aging [14,15].
The effects of exercise have also been implicated in

MSTN pathway signaling. Specifically, Louis et al. [16] re-
ported that MSTN mRNA expression is depressed within
hours following either endurance or resistance exercise.
Dalbo et al. [17] similarly reported that resistance exercise
decreased skeletal muscle myostatin mRNA levels up
to 6 hours post-exercise. Likewise, recent evidence
suggests that skeletal muscle MSTN increases three
days following detraining from 90 days of resistance
exercise; an event which preceded subtle but rapid type II
fiber atrophy [18].
While exercise reduces skeletal muscle myostatin

expression, nutritional strategies to reduce myostatin
signaling are also warranted. In this regard, select nutri-
ents have been shown to increase skeletal muscle anabolic
signaling mechanisms. Leucine is a well-known activator
of mTOR signaling [19-21], and leucine has additionally
been shown to reduce muscle proteolysis [22]. The leucine
metabolite beta-hydroxy- beta-methylbutyric acid (HMB)
has also been well-described with regard to its effects on
whole-body muscle mass accretion [23-25], as well as
its ability to independently activate skeletal muscle
mTOR signaling and reduce proteolytic signaling [26-28].
Creatine monohydrate has been less studied with regards
to mTOR pathway modulation, although some evi-
dence exists suggesting that creatine monohydrate is
able to increase myotube differentiation through
poorly understood mechanisms [29]. Notwithstanding,
ample literature has demonstrated that creatine monohy-
drate supplementation is able to increase muscle mass
and strength [30-35].
While a plethora of literature reports the effects of

these nutritional supplements on skeletal muscle ana-
bolic and/or anti-catabolic mechanisms, no information
to our knowledge is known regarding how or if these
supplements can abrogate facets of MSTN signaling.
Therefore, the purpose of this study was to determine
whether differentiated/mature myotubes treated with
leucine, HMB or creatine monohydrate in the presence of
MSTN affected: a) myotube diameter, b) select anabolic
indices (Protein: DNA, RNA: DNA), and c) the mRNA
expression patterns of genes associated with myostatin
signaling.
Methods
Cell culture methods
C2C12 myoblasts (graciously donated by RHA), pas-
sage no. 4–10, were maintained in growth medium
(GM; DMEM, 10% FBS, 1% penicillin/streptomycin,
0.1% gentamycin) under standard culture conditions
at 37°C in a 5% CO2 atmosphere. Myoblasts were grown
on 145 mm plates (Griener Bio-One GmbH, Maybachstr,
Frickenhausen, GER) at a density of 7.5 × 105 in 10 ml of
growth medium for protein analyses, or on 12-well plates
(Griener Bio-One GmbH) at a density of 5 × 105 for
mRNA analyses. Differentiation was induced 48 h
after myoblast growth reached 80%–90% confluency
by removing the growth medium and replacing it with
differentiation medium (DM; DMEM, 2% (vol/vol)
horse serum, 1% penicillin/streptomycin). DM was then
replaced every 24 h for 4 d.

Treatment methods (DM only, MSTN only, MSTN +
Leucine, MSTN + HMB, MSTN + Creatine)
The study design is illustrated in Figure 1 below. Briefly,
after four days of differentiation, cells were treated three
times per day with one of the following treatments for
48 h: 1) DM and vehicle (10 mM Tris-NaCl); denoted as
‘DM/CTL’ only, 2) 10 ng/ml rGDF-8 MSTN (R&D Systems,
Minneapolis, MN, USA); denoted as ‘MSTN’, 3) 10 ng/ml
MSTN and 10 μM (13 ug/ml) leucine (EMD Chemicals,
Inc., San Diego, CA, USA); denoted as MSTN+Leu, 4)
10 ng/ml MSTN and 10 μM (13 ug/ml) of free acid HMB
(Metabolic Technologies, Inc., Ames, IA, USA);
denoted as ‘MSTN+HMB’, or 5) 10 ng/ml MSTN and
10 μM (12 ug/ml) creatine monohydrate (BodyBuilding.
com, Boise, ID, USA); denoted as ‘MSTN+Crea’. The
MSTN treatment dosage was based upon two prior
studies showing that 10–30 ng/ml reduces myotube
diameter in differentiated C2C12 myotubes [36,37].
The leucine, HMB and creatine monohydrate dosages were
based upon prior C2C12 literature showing biological
responses to similar dosages for each respective ingredient
[21,38,39]. On the last day of treatment, and 30–45 min
prior to cell lysis, cells were pulse-labeled with 1 μM of
puromycin hydrochloride (Millipore, Temecula, CA, USA)
in phosphate-buffered saline for subsequent muscle protein
synthesis (MPS) assessment.
Cells grown on 145 mm plates were lysed using

RIPA buffer (Tris base; pH 8.0, NaCl, NP-40, sodium
deoxycholate, SDS) containing protease and phosphatase
inhibitors (Ameresco, Solon, OH, USA). After cells were
lysed, RIPA homogenates were analyzed for total protein,
total DNA, and total RNA using a Qubit Fluorometer
(Life Technologies, Grand Island, NY). RIPA homogenates
were then spun down at 500xg for 5 min, and supernatants
were stored for Western blotting analyses as described
below.



Outcome variables
Fiber diameter

Total protein, DNA, RNA 
Muscle protein synthesis (SUnSET) 

Select mRNAs

C2C12 myotubes formed 
(4 days of differentiation)

2-day 
treatments

DM/CTL Treatment with: 
- 10 ng/ml MSTN
- Vehicle

Treatment with: 
- 10 ng/ml MSTN
- 10 µM leucine

Treatment with: 
- 10 ng/ml MSTN
- 10 µM HMB

Treatment with: 
- 10 ng/ml MSTN
- 10 µM CrM

Figure 1 Study design. After four days of differentiation, cells were treated for two days (three times per day) with differentiation media (DM)
and vehicle (10 mM Tris-NaCl), 10 ng/ml recombinant GDF-8 MSTN, 10 ng/ml MSTN and 10 μM leucine, 10 ng/ml MSTN and 10 μM of HMB, or
10 ng/ml MSTN and 10 μM creatine monohydrate.
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Light Microscopy Imaging and ImageJ Analysis
Prior to cell lysis of the 145 mm plates, 10× digital
images were obtained for n = 2 for each treatment using
light microscopy (Nikon Eclipse Ci-L) and digital capture
(Nikon DS-QilMc). Fiber diameters from 150–190
myotubes per condition were obtained and assessed
using ImageJ (NIH, Bethesda, MD, USA).
Western blotting methods and analysis
In order to examine if MSTN treatment reduced muscle
protein synthesis (MPS) rates compared to DM/CTL myo-
tubes, the SUnSET method was employed [40]. Briefly,
RIPA homogenates from 145 mm plates were subjected to
4-20% SDS-polyacrylamide gel electrophoresis using pre-
casted gels (C.B.S. Scientific Company, San Diego, CA,
USA). Proteins were transferred to polyvinylidene difluoride
membranes (Whatman™, Westran® Clear Signal), and mem-
branes were blocked for 1 h at room temperature with 5%
nonfat milk powder. Mouse anti-puromycin (1:5,000;
Millipore) was then incubated with membranes overnight
at 4°C in 5% bovine serum albumin, and the following day
membranes were incubated with anti-mouse IgG secondary
antibodies (Cell Signaling, Danvers, MA, USA) at room
temperature for 1 h. Membranes were then developed
using an enhanced chemiluminescent reagent (Amersham,
Pittsburgh, PA, USA), and band densitometry was
performed through the use of a UVP Imager and associated
densitometry software (UVP, LLC, Upland, CA, USA).
RNA isolation and real-time PCR
RNA was isolated from myotubes grown on 12-well
plates using Ribozol (Ameresco) per the manufacturer’s
recommendations. 400 ng of cDNA was synthesized using a
cDNA synthesis kit (Quanta, Gaithersburg, MD, USA) per
the manufacturer’s recommendations. Real-time PCR
was performed using mRNA specific primers {Akirin-1/
Mighty: forward primer 5′- ATACAGTCACGGAGCTC
CCT-3′, reverse primer 5′- ACTTGTTACACGCTCCGA
GG-3′; Atrogin-1/MAFbx: forward primer 5′- CCATCCT
CTTTCTTGCCCGT-3′, reverse primer 5′- ATCACTGT
CCAACCTGGCTG-3′; MuRF-1: forward primer 5′-
TGGGACAGATGAGGAGGAGG-3′, reverse primer 5′-
TTTACCCTCTGTGGTCACGC-3′; beta-actin: forward
primer 5′- GTGGATCAGCAAGCAGGAGT-3′, reverse
primer 5′- ACGCAGCTCAGTAACAGTCC-3′; Notch-1:
forward primer 5′- TGGACTGTTCTGTGCATCCC-3′,
reverse primer 5′- TGGGGATCAGAGGCCACATA-3′;
Ski: forward primer 5′- CCCACATGCCAGGATGACTT-
3′, reverse primer 5′- GCTTTGCCAACTTCACCCAG-3′;
MyoD: forward primer 5′- CCTGCCCTCCACATCCTT
TT-3′, reverse primer 5′- GAAGGGGGAGAGTGGGGT
AT-3′} and SYBR green chemistry (Quanta). Primer
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efficiency curves for all genes were generated and efficien-
cies ranged between 90% and 110%.

shRNA experiments to confirm that Akirin-1/Mighty
affects myotube size
A separate batch of C2C12 myoblasts was seeded in
12-well plates at a density of 5 × 105 cells per plate.
Cells were grown to 80-90% confluency and then
transfection growth media containing Lipofectamine
3000 (Life Technologies) was added to myoblasts per the
manufacturer’s recommendations. Specifically, n = 4–5
wells were transfected with green fluorescent protein
(GFP) reporter plasmids (GeneCopoeia, Rockville, MD,
USA) containing either: a) scrambled shRNA, or b)
Akirin-1/Mighty shRNA. Twenty-four hours after
transfection, cells were differentiated as mentioned
above. Cells were then allowed to differentiate for
4 days prior to imaging on an inverted fluorescent
microscope (Olympus IX71). 10× digital fluoromteric
FITC-filtered images were obtained for each transfec-
tion condition and myotube areas of GFP-positive
myotubes were quantified using ImageJ. Cells were then
lysed with Ribozol (Ameresco) per the manufacturer’s
recommendations and Akirin-1/Mighty mRNA knock-
down was confirmed using real-time PCR methods as
mentioned above.
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Figure 2 Efects of MSTN in the absence or presence of leucine, HMB,
Data are presented as means ± standard error. Data in A show that MSTN trea
MSTN-induced atrophy. Data in B & C are n = 5-6 plates per treatment. Muscl
+Leu, MSTN+HMB and MSTN+Crea samples were separately analyzed for MPS
performed where applicable; difference superscript letters = p < 0.05 and NS =
white bar is 100 μm.
Statistics
All data are presented as means ± standard error. For all
data, statistics were performed between treatments using
an ANOVA with LSD post-hoc comparisons when
applicable. All statistics were performed using IBM SPSS
version 22.0 and significance was determined at p < 0.05.

Results
L-leucine, HMB and creatine monohydrate prevent
myostatin-induced myotube atrophy
Two days of MSTN only treatment significantly reduced
myotube diameter by approximately 30% compared to
the DM/CTL condition (p < 0.001; Figure 2A). However, the
MSTN+Leu, MSTN+HMB and MSTN+Crea treatments
rescued this atrophy effect. MSTN treatment tended
to decrease the protein: DNA compared to the DM/CTL
condition (p = 0.084, Figure 2B; index of muscle hyper-
trophy [41]). However, MSTN+Crea myotubes exhibited a
significantly greater protein: DNA ratio compared to the
MSTN only treatment (p < 0.01, Figure 2B). MSTN+ Leu,
MSTN+HMB, and MSTN+Crea myotubes all exhibited
a greater RNA: DNA ratio compared to the MSTN only
condition (Figure 2C; index of translational capacity and
hypertrophic potential [41]).
Interestingly, two days of MSTN treatment did not

affect MPS rates compared to DM/CTL only-treated
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(data not shown). One-way ANOVA with LSD post-hoc comparisons
no significant differences. In subfigure D of 10x light micrographs,
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myotubes (Figure 2E). Thus, the MSTN-induced reduction
in myotube diameter appears to be independent of
MPS rates. Notably, MPS rates were also determined
in a separate batch of DM/CTL (n = 2), MSTN + Leu
(n = 6), MSTN+HMB (n = 6), and MSTN+Crea (n = 6)
myotubes. Compared to DM/CTL myotubes, MSTN+ Leu
and MSTN+HMB caused non-significant increases in
MPS rates (38% and 31%, respectively; data not shown),
whereas MSTN+Crea did not increase MPS levels.

Myostatin-induced down-regulation of Akirin-1/Mighty
mRNA is rescued by creatine treatments
Given that MSTN-treated myotubes atrophied independent
of MPS rates, we next examined if select atrogenes
(MAFbx/atrogin-1, MuRF-1), MSTN signaling repressors
(Notch-1, Ski), and/or MSTN transcriptional targets
(Akirin-1/Mighty, MyoD) were affected at the mRNA level
by MSTN treatment with or without leucine, HMB or
creatine monohydrate treatments. Compared to DM/CTL
myotubes, the MSTN-only treatment did not affect the
mRNA expression patterns of MuRF-1, Ski, Notch-1.
However, MAFbx/atrogin-1 mRNA levels were depressed
compared to DM/CTL myotubes (Figure 3A/B).
The MSTN-only treatment did depress Akirin-1/Mighty

mRNA and MyoD mRNA levels by 27% (p < 0.001) and
26% (p < 0.01) compared to DM/CTLmyotubes (Figure 3C).
Moreover, MSTN-treated myotubes co-treated with leucine
or HMB reversed MSTN-induced Akirin-1/Mighty
mRNA down-regulation (p < 0.05); specifically, MSTN+
Leu exhibited an 18% increase and MSTN+HMB exhibited
Figure 3 Effects of MSTN in the absence or presence of leucine, HMB
Data are presented as means ± standard error (n = 6–9 plates per treatmen
expression of explicit atrogenes (A), MSTN signaling repressors (B), and MS
Akirin-1/Mighty mRNA expression was modestly-to-strongly correlated with
Mighty mRNA expression was modestly correlated with the early differentia
comparisons performed in sub-figures A/B/C; difference superscript letters
MyoD mRNA compared to all other groups (p < 0.01).
a 27% increase in Akirin-1/Mighty mRNA compared to
MSTN-treated myotubes. MSTN+Crea-treated myotubes
exhibited a significant up-regulation in Akirin-1/Mighty
mRNA levels by 36% compared to DM/CTL myotubes
(p < 0.05) and 86% compared to MSTN-only treated myo-
tubes (p < 0.001). The expression of Akirin-1/Mighty
mRNA was modestly (0.50 < r < 0.80) to strongly (r > 0.80)
correlated with select measured anabolic indices (Pro:
DNA r = 0.98, p = 0.004; fiber diameter r = 0.72, p > 0.05;
Figure 3D/E) as well as the early differentiation marker
MyoD mRNA (r = 0.61, p > 0.05; Figure 3F).

Knockdown of Akirin-1/Mighty mRNA decreases myotube
size
As mentioned above, Akirin-1/Mighty mRNA expression
patterns between treatments exhibited modest to strong
correlations to select hypertrophy indices. Thus, we next
sought to determine if experimentally decreasing Akirin-1/
Mighty mRNA using shRNA knockdown affected myotube
size. Indeed, GFP-positive myotubes transfected with the
Akirin-1/Mighty shRNA plasmid exhibited a drastic
reduction in myotube area (−72%, p < 0.001; Figure 4A).
Knockdown in transfected wells was also confirmed at
the mRNA level (Figure 4B). Therefore, we posit that
MSTN-induced atrophy observed in the current study
is likely linked to the MSTN-induced down-regulation in
Akirin-1/Mighty mRNA. Furthermore, leucine and HMB
appear to prevent this down-regulation and creatine
monohydrate increases myotube Akirin-1/Mighty mRNA
levels in spite of MSTN treatment.
, or creatine on the expression of MSTN-related mRNAs. Legend:
t). Effects of MSTN with or without each ingredient on the mRNA
TN transcriptional targets (C). Sub-figures D and E demonstrate that
measured hypertrophy variables. Sub-figure F shows that Akirin-1/
tion marker MyoD mRNA. One-way ANOVA with LSD post-hoc
= p < 0.05. In sub-figure C, ** indicates that MSTN down-regulated



Figure 4 Experiment demonstrating Akirin-1/Mighty mRNA knockdown affects myotube size. Legend: Data are presented as means ± standard
error (n = 4–5 plates per treatment). Effects of shRNA-mediated Akirin-1/Mighty mRNA knockdown on myotube size versus a scrambled shRNA control
condition (A), and confirmation that Akirin-1 mRNA was reduced in shRNA-transfected myotubes (B). Photographs in sub-figure C are 10x representative
images of GFP-positive cells (arrows) that were transfected with either a scrambled (CTL)-shRNA or Akirin-1/Mighty-shRNA.
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Discussion
We used an in vitro approach to investigate whether
leucine, HMB, or creatine monohydrate could rescue
the atrophic effects of MSTN in C2C12 myotubes.
MSTN has previously been shown to inhibit myoblast
proliferation, myotube differentiation and protein synthesis
in the C2C12 cell line [42-44]. Specifically, one of the afore-
mentioned studies demonstrated that myotubes treated
with high doses of recombinant MSTN (~1-6 μg/ml which
is 100-600x the dose used in the current study) significantly
depressed protein synthesis in myotubes [42]. However, the
relatively low concentration of MSTN treatments used in
the current study reduced myotube size independent of
muscle protein synthesis. This finding is in agreement with
other studies which used MSTN treatment dosages similar
to our study (10–30 ng/ml) and reported MSTN to
reduce myotube diameter by inhibiting differentiation in
C2C12 myotubes [36,37]. Thus, we hypothesize that
MSTN-induced atrophy in the current study was likely due
to diminished myotube differentiation rather than decreases
in muscle protein synthesis and/or increases in muscle
proteolysis; a hypothesis which is further supported by the
MSTN-induced down-regulation in MyoD mRNA.
Interestingly, while myotubes treated with MSTN

only showed a significant decrease in myotube diameter,
this effect was reversed in all three treatment groups
(MSTN+ Leu, MSTN+HMB, and MSTN+Crea). There
is ample evidence to suggest that leucine and HMB are
able to increase muscle protein synthesis in vitro and
in vivo [26,27,45,46]. Thus, it is difficult to reconcile why
MSTN+ Leu and MSTN+HMB treatments in the current
study did not statistically increase muscle protein synthesis
compared to DM/CTL myotubes. However, all treatments
occurred in myotubes that were not amino acid deprived;
this being a condition which may be obligatory for leucine
and HMB to exert more profound muscle protein
synthesis effects [47]. Furthermore, the MSTN + Crea
treated group demonstrated the greatest hypertrophic
effect in spite of the fact that creatine monohydrate likely
does not affect markers of muscle protein synthesis [29]
and/or muscle protein synthesis rates [48] in vivo. Thus,
we hypothesized that leucine, HMB and creatine monohy-
drate treatments all independently counteracted low-dose
MSTN-induced atrophy through potential genetic mecha-
nisms related to myotube differentiation.
Of the mRNAs measured in the current study select

hypertrophic indices, including the protein: DNA and
myofiber diameter, were strongly and modestly correlated
with Akirin-1/Mighty gene expression, respectively.
Furthermore, our main findings with Akirin-1/Mighty
gene expression were as follows: 1) leucine and HMB can
reverse MSTN-induced down-regulation in Akirin-1/
Mighty mRNA; 2) in spite of MSTN treatment, creatine
monohydrate up-regulated Akirin-1/Mighty mRNA
while exhibiting the most potent anabolic effects; and 3)
Akrin-1/Mighty mRNA knockdown via shRNA transfec-
tion reduced myofiber size. Hence, our findings support the
hypothesis that the transcriptional modulation of Akirin-1/
Mighty mRNA by leucine/HMB/creatine monohydrate
may be a mechanism whereby these ingredients promote
myotube hypertrophy in vitro in spite of MSTN treatments.
Our finding that each of these purported anabolic

ingredients rescues MSTN-induced Akirin-1/Mighty
mRNA down-regulation is indeed difficult to interpret
from a mechanistic and practical viewpoint regarding
the preservation of myofiber size. Furthermore, this is
the first study to show that each of these ingredients
affects (directly or indirectly) the mRNA expression of
Akirin-1/Mighty mRNA. Resistance exercise has been
shown to increase Akirin-1/Mighty mRNA expression
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patterns 6 h and 48 h following an acute exercise bout in
rodents [49]; of note these rodents were trained 6 weeks
prior to the acute bout and the exercise-induced changes
in Akrin-1/Mighty strongly predicted the hypertrophic
response to the 6-week training bout. The authors
concluded that, while Akrin-1/Mighty may play a role
in the activation of satellite cells, how Akirin-1/
Mighty promotes the hypertrophic response to exercise
has yet to be determined. Notwithstanding, it appears that
Akirin-1/Mighty plays a role in exercise-induced skeletal
muscle hypertrophy. The expression of mRNA expression
of akirin genes in skeletal muscle are sensitive to fasting
and re-feeding in Artic charr [50], and we have observed
mixed gastrocnemius Akirin-1/Mighty mRNA to increase
approximately 90% 3 h after rats fed 10 human equivalent
grams of whey protein concentrate (which is ~12-14%
leucine) when compared to 18-h fasted rats (p < 0.05;
unpublished observations). Hence, our finding that
purported anabolic ingredients directly or indirectly
affect myotube Akirin-1/Mighty mRNA expression is
not unfounded given that other hypertrophic stimuli
(i.e., resistance exercise and protein feeding) have also
been shown to increase the expression of this gene in
skeletal muscle. In this regard, future research is needed
to elucidate if: 1) decrements in Akirin-1/Mighty mRNA
expression accompany and/or causal to muscle wasting
conditions such as sarcopenia, cachexia, and disuse
atrophy; and 2) if each of the anabolic ingredients studied
herein mitigate these conditions through Akirin-1/Mighty
gene expression changes.
While the exact mechanisms are unknown as to how

Akirin-1/Mighty regulates muscle mass, it is a proven
transcriptional target of myostatin [49,51,52]. Recent
evidence also suggests that the Akirin-1/Mighty gene
modulates satellite cell proliferation and differentiation
following muscle injury, and there is interplay between
Akirin-1/Mighty down-regulation and the inhibition of
differentiation-promoting genes such as MyoD [53]. There
is a paucity of literature examining how leucine and/or
HMB affect Akirin-1/Mighty mRNA expression patterns,
though recent in vivo evidence suggests that chronically
consuming a leucine-rich pre-exercise beverage increases
skeletal muscle MyoD and MRF4 mRNA [54]. Furthermore,
adding various concentrations (10–100 μg/ml) of HMB to
serum-starved myoblasts has been shown to induce
myoblast proliferation and MyoD expression, suggestive of
enhanced myoblast differentiation [55]. However, Akirin-1/
Mighty mRNA was not assessed in the aforementioned
studies making it difficult to reconcile whether these
effects were mitigated through Akrin-1/Mighty mRNA
gene expression.
Of particular interest was the ability of creatine

monohydrate to promote the up-regulation of Akirin-1/
Mighty mRNA in the presence of myostatin. Creatine
monohydrate supplementation has been shown to reduce
the catabolic response of hind limb immobilization in rats
[56]. Additionally, Johnston et al. [57] have demonstrated
that short-term creatine monohydrate supplementation
(7 days) attenuates losses of muscle mass and strength dur-
ing upper-arm immobilization in young men. Furthermore,
prolonged creatine monohydrate supplementation has been
reported to increase satellite cell proliferation and differen-
tiation in resistance-trained subjects versus a placebo group
[58]. While the anabolic/anti-catabolic mechanisms of
creatine monohydrate remain poorly understood, creatine
monohydrate supplementation has been shown to increase
cellular fluid retention and modulate the expression of
myogenic transcription factors related to skeletal muscle
hypertrophy [59,60]. With regards to the former mechan-
ism, Häussinger [61] reported that an increase in cellular
fluid/swelling acts as an anabolic proliferative signal,
whereas cell shrinkage is catabolic and anti-proliferative.
However, creatine monohydrate has been shown to pro-
mote myotube hypertrophy in vitro by enhancing myotube
differentiation compared to DM/CTL-treated myotubes
[38]; an effect the authors suggested may be independent of
the intracellular osmolarity effects of creatine monohydrate.
Therefore, the ability of creatine monohydrate to up-
regulate Akirin-1/Mighty mRNA may be a primary mech-
anism involved in the ability of creatine monohydrate to
stimulate skeletal muscle hypertrophy independent of
muscle protein synthesis and/or its effects on osmolarity. In
this regard, future research should continue to examine
the ability of creatine monohydrate supplementation to
modulate Akirin-1/Mighty mRNA expression in vivo.

Conclusions
We demonstrate that leucine, HMB, and creatine mono-
hydrate reverse myostatin-induced atrophy in myotubes;
this potentially results from the independent action of
each ingredient modulating Akirin-1/Mighty mRNA
expression. Furthermore, our findings suggest that, in
spite of MSTN treatments, creatine monohydrate treatment
up-regulates Akirin-1/Mighty mRNA which leads to a
hypertrophic effect clearly independent of muscle protein
synthesis. Future in vivo studies should continue to
examine how leucine, HMB, and/or creatine monohydrate
independently or synergistically affect Akirin-1/Mighty
gene expression. More importantly, while Akirin-1/Mighty
gene expression is needed for the maintenance of
myofiber size as reported herein, further research is
needed in order to examine how Akirin-1/Mighty gene
expression mechanistically relates to skeletal muscle
hypertrophy in vivo.
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