Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J, et al. International Society Of Sports Nutrition Position Stand: Nutrient Timing. J Int Soc Sports Nutr. 2008;5:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sherman WM, Costill DI, Fink WJ, Miller JM. Effect Of Exercise-Diet Manipulation On Muscle Glycogen And Its Subsequent Utilization During Performance. Int J Sports Med. 1981;2(2):114–8.
Article
CAS
PubMed
Google Scholar
Karlsson J, Saltin B. Diet, Muscle Glycogen, And Endurance Performance. J Appl Physiol. 1971;31(2):203–6.
CAS
PubMed
Google Scholar
Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle Glycogen Synthesis After Exercise: Effect Of Time Of Carbohydrate Ingestion. J Appl Physiol. 1988;64(4):1480–5.
CAS
PubMed
Google Scholar
Cermak NM, Res PT, De Groot LC, Saris WH, Van Loon LJ. Protein Supplementation Augments The Adaptive Response Of Skeletal Muscle To Resistance-Type Exercise Training: A Meta-Analysis. Am J Clin Nutr. 2012;96(6):1454–64.
Article
CAS
PubMed
Google Scholar
Marquet LA, Hausswirth C, Molle O, Hawley JA, Burke LM, Tiollier E, Brisswalter J. Periodization Of Carbohydrate Intake: Short-Term Effect On Performance. Nutrients. 2016;8(12):E755.
Article
PubMed
Google Scholar
Barry DW, Hansen KC, Van Pelt RE, Witten M, Wolfe P, Kohrt WM. Acute Calcium Ingestion Attenuates Exercise-Induced Disruption Of Calcium Homeostasis. Med Sci Sports Exerc. 2011;43(4):617–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haakonssen EC, Ross ML, Knight EJ, Cato LE, Nana A, Wluka AE, Cicuttini FM, Wang BH, Jenkins DG, Burke LM. The Effects Of A Calcium-Rich Pre-Exercise Meal On Biomarkers Of Calcium Homeostasis In Competitive Female Cyclists: A Randomised Crossover Trial. PLoS One. 2015;10(5):E0123302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shea KL, Barry DW, Sherk VD, Hansen KC, Wolfe P, Kohrt WM. Calcium Supplementation And Pth Response To Vigorous Walking In Postmenopausal Women. Med Sci Sports Exerc. 2014;46(10):2007–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherk VD, Barry DW, Villalon KL, Hansen KC, Wolfe P, Kohrt WM. Timing Of Calcium Supplementation Relative To Exercise Alters The Calcium Homeostatic Response To Vigorous Exercise. San Francisco: Endocrine's Society Annual Meeting; 2013.
Google Scholar
Fujii T, Matsuo T, Okamura K. The Effects Of Resistance Exercise And Post-Exercise Meal Timing On The Iron Status In Iron-Deficient Rats. Biol Trace Elem Res. 2012;147(1-3):200–5.
Article
CAS
PubMed
Google Scholar
Matsuo T, Kang HS, Suzuki H, Suzuki M. Voluntary Resistance Exercise Improves Blood Hemoglobin Concentration In Severely Iron-Deficient Rats. J Nutr Sci Vitaminol. 2002;48(2):161–4.
Article
CAS
PubMed
Google Scholar
Ryan EJ, Kim CH, Fickes EJ, Williamson M, Muller MD, Barkley JE, Gunstad J, Glickman EL. Caffeine Gum And Cycling Performance: A Timing Study. J Strength Cond Res. 2013;27(1):259–64.
Article
PubMed
Google Scholar
Antonio J, Ciccone V. The Effects Of Pre Versus Post Workout Supplementation Of Creatine Monohydrate On Body Composition And Strength. J Int Soc Sports Nutr. 2013;10(1):36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Candow DG, Chilibeck PD, Facci M, Abeysekara S, Zello GA. Protein Supplementation Before And After Resistance Training In Older Men. Eur J Appl Physiol. 2006;97(5):548–56.
Article
CAS
PubMed
Google Scholar
Cribb PJ, Hayes A. Effects Of Supplement Timing And Resistance Exercise On Skeletal Muscle Hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–25.
Article
PubMed
Google Scholar
Siegler JC, Marshall PW, Bray J, Towlson C. Sodium Bicarbonate Supplementation And Ingestion Timing: Does It Matter? J Strength Cond Res. 2012;26(7):1953–8.
Article
PubMed
Google Scholar
Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle Glycogen Utilization During Prolonged Strenuous Exercise When Fed Carbohydrate. J Appl Physiol. 1986;61(1):165–72.
CAS
PubMed
Google Scholar
Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate Usage During Prolonged Exercise Following A Preexercise Meal. J Appl Physiol. 1985;59(2):429–33.
CAS
PubMed
Google Scholar
Tarnopolsky MA, Gibala M, Jeukendrup AE, Phillips SM. Nutritional Needs Of Elite Endurance Athletes. Part I: Carbohydrate And Fluid Requirements. Eur J Sport Sci. 2005;5(1):3–14.
Article
Google Scholar
Dennis SC, Noakes TD, Hawley JA. Nutritional Strategies To Minimize Fatigue During Prolonged Exercise: Fluid, Electrolyte And Energy Replacement. J Sports Sci. 1997;15(3):305–13.
Article
CAS
PubMed
Google Scholar
Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, Lambert CP, Zachweija JJ. Muscle Glycogenolysis During Differing Intensities Of Weight-Resistance Exercise. J Appl Physiol. 1991;70(4):1700–6.
CAS
PubMed
Google Scholar
Gleeson M, Nieman DC, Pedersen BK. Exercise, Nutrition And Immune Function. J Sports Sci. 2004;22(1):115–25.
Article
PubMed
Google Scholar
Rodriguez NR, Di Marco NM, Langley S. American College Of Sports Medicine Position Stand. Nutrition And Athletic Performance. Med Sci Sports Exerc. 2009;41(3):709–31.
Article
PubMed
CAS
Google Scholar
Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion Of Protein With Carbohydrate During Recovery From Endurance Exercise Stimulates Skeletal Muscle Protein Synthesis In Humans. J Appl Physiol. 2009;106(4):1394–402.
Article
CAS
PubMed
Google Scholar
Van Hall G, Shirreffs SM, Calbet JA. Muscle Glycogen Resynthesis During Recovery From Cycle Exercise: No Effect Of Additional Protein Ingestion. Journal Of Applied Physiology (Bethesda, Md : 1985). 2000;88(5):1631–6.
Google Scholar
Van Loon L, Saris WH, Kruijshoop M. Maximizing Postexercise Muscle Glycogen Synthesis: Carbohydrate Supplementation And The Application Of Amino Acid Or Protein Hydrolysate Mixtures. Am J Clin Nutr. 2000;72:106–11.
PubMed
Google Scholar
Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA. Substrate Utilization During Exercise Performed With And Without Glucose Ingestion In Female And Male Endurance Trained Athletes. Int J Sport Nutr Exerc Metab. 2003;13(4):407–21.
Article
CAS
PubMed
Google Scholar
Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA. Menstrual Cycle Phase And Sex Influence Muscle Glycogen Utilization And Glucose Turnover During Moderate-Intensity Endurance Exercise. Am J Phys Regul Integr Comp Phys. 2006;291(4):R1120–8.
CAS
Google Scholar
Carter SL, Rennie C, Tarnopolsky MA. Substrate Utilization During Endurance Exercise In Men And Women After Endurance Training. Am J Physiol Endocrinol Metab. 2001;280(6):E898–907.
CAS
PubMed
Google Scholar
Wismann J, Willoughby D. Gender Differences In Carbohydrate Metabolism And Carbohydrate Loading. J Int Soc Sports Nutr. 2006;3:28–34.
Article
PubMed
PubMed Central
Google Scholar
Escobar KA, Vandusseldorp TA, Kerksick CM: Carbohydrate Intake And Resistance-Based Exercise: Are Current Recommendations Reflective Of Actual Need. Brit J Nutr 2016;In Press.
Burke LM, Cox GR, Culmmings NK, Desbrow B. Guidelines For Daily Carbohydrate Intake: Do Athletes Achieve Them? Sports Med. 2001;31(4):267–99.
Article
CAS
PubMed
Google Scholar
Sherman WM, Costill DL, Fink WJ, Hagerman FC, Armstrong LE, Murray TF. Effect Of A 42.2-Km Footrace And Subsequent Rest Or Exercise On Muscle Glycogen And Enzymes. J Appl Physiol. 1983;55:1219–24.
CAS
PubMed
Google Scholar
Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate Loading In Human Muscle: An Improved 1 Day Protocol. Eur J Appl Physiol. 2002;87(3):290–5.
Article
CAS
PubMed
Google Scholar
Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA. Rapid Carbohydrate Loading After A Short Bout Of Near Maximal-Intensity Exercise. Med Sci Sports Exerc. 2002;34(6):980–6.
Article
PubMed
Google Scholar
Wright DA, Sherman WM, Dernbach AR. Carbohydrate Feedings Before, During, Or In Combination Improve Cycling Endurance Performance. J Appl Physiol. 1991;71(3):1082–8.
CAS
PubMed
Google Scholar
Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements In Exercise Performance: Effects Of Carbohydrate Feedings And Diet. J Appl Physiol. 1987;62(3):983–8.
CAS
PubMed
Google Scholar
Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A. Effects Of 4 H Preexercise Carbohydrate Feedings On Cycling Performance. Med Sci Sports Exerc. 1989;21(5):598–604.
Article
CAS
PubMed
Google Scholar
Reed MJ, Brozinick JT Jr, Lee MC, Ivy JL. Muscle Glycogen Storage Postexercise: Effect Of Mode Of Carbohydrate Administration. J Appl Physiol. 1989;66(2):720–6.
CAS
PubMed
Google Scholar
Keizer H, Kuipers H, Van Kranenburg G. Influence Of Liquid And Solid Meals On Muscle Glycogen Resynthesis, Plasma Fuel Hormone Response, And Maximal Physical Working Capacity. Int J Sports Med. 1987;8:99–104.
Article
CAS
PubMed
Google Scholar
Foster C, Costill DL, Fink WJ. Effects Of Preexercise Feedings On Endurance Performance. Med Sci Sports Exerc. 1979;11:1–5.
CAS
Google Scholar
Moseley L, Lancaster GI, Jeukendrup AE. Effects Of Timing Of Pre-Exercise Ingestion Of Carbohydrate On Subsequent Metabolism And Cycling Performance. Eur J Appl Physiol. 2003;88(4-5):453–8.
Article
CAS
PubMed
Google Scholar
Hawley JA, Burke LM. Effect Of Meal Frequency And Timing On Physical Performance. Br J Nutr. 1997;77(Suppl 1):S91–103.
Article
CAS
PubMed
Google Scholar
Galloway SD, Lott MJ, Toulouse LC. Preexercise Carbohydrate Feeding And High-Intensity Exercise Capacity: Effects Of Timing Of Intake And Carbohydrate Concentration. Int J Sport Nutr Exerc Metab. 2014;24(3):258–66.
Article
CAS
PubMed
Google Scholar
Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP. Preexercise Carbohydrate Ingestion, Glucose Kinetics, And Muscle Glycogen Use: Effect Of The Glycemic Index. J Appl Physiol. 2000;89(5):1845–51.
CAS
PubMed
Google Scholar
Febbraio MA, Stewart KL. Cho Feeding Before Prolonged Exercise: Effect Of Glycemic Index On Muscle Glycogenolysis And Exercise Performance. J Appl Physiol. 1996;81(3):1115–20.
CAS
PubMed
Google Scholar
Jeukendrup AE. Carbohydrate Intake During Exercise And Performance. Nutrition. 2004;20(7-8):669–77.
Article
CAS
PubMed
Google Scholar
Jeukendrup AE. Carbohydrate Feeding During Exercise. Eur J Sport Sci. 2008;8(2):77–86.
Article
Google Scholar
Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE. Effect Of Carbohydrate Feeding Frequencies And Dosage On Muscle Glycogen Use During Exercise. Med Sci Sports Exerc. 1985;17(4):472–6.
Article
CAS
PubMed
Google Scholar
Schweitzer GG, Smith JD, Lecheminant JD. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance. Int J Exerc Sci. 2009;2(1):4–18.
PubMed
PubMed Central
Google Scholar
Heesch MW, Mieras ME, Slivka DR. The Performance Effect Of Early Versus Late Carbohydrate Feedings During Prolonged Exercise. Appl Physiol Nutr Metab. 2014;39(1):58–63.
Article
CAS
PubMed
Google Scholar
Widrick JJ, Costill DL, Fink WJ, Hickey MS, Mcconell GK, Tanaka H. Carbohydrate Feedings And Exercise Performance: Effect Of Initial Muscle Glycogen Concentration. J Appl Physiol. 1993;74(6):2998–3005.
CAS
PubMed
Google Scholar
Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA. Effects Of Carbohydrate Ingestion Before And During Exercise On Glucose Kinetics And Performance. J Appl Physiol. 2000;89(6):2220–6.
CAS
PubMed
Google Scholar
Newell ML, Hunter AM, Lawrence C, Tipton KD, Galloway SD. The Ingestion Of 39 Or 64 G.H(-1) Of Carbohydrate Is Equally Effective At Improving Endurance Exercise Performance In Cyclists. Int J Sport Nutr Exerc Metab. 2015;25(3):285–92.
Article
PubMed
Google Scholar
Colombani PC, Mannhart C, Mettler S. Carbohydrates And Exercise Performance In Non-Fasted Athletes: A Systematic Review Of Studies Mimicking Real-Life. Nutr J. 2013;12:16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pochmuller M, Schwingshackl L, Colombani PC, Hoffmann G. A Systematic Review And Meta-Analysis Of Carbohydrate Benefits Associated With Randomized Controlled Competition-Based Performance Trials. J Int Soc Sports Nutr. 2016;13:27.
Article
PubMed
PubMed Central
Google Scholar
Phillips SM, Sproule J, Turner AP. Carbohydrate Ingestion During Team Games Exercise: Current Knowledge And Areas For Future Investigation. Sports Med. 2011;41(7):559–85.
Article
PubMed
Google Scholar
Clarke ND, Drust B, Maclaren DP, Reilly T. Fluid Provision And Metabolic Responses To Soccer-Specific Exercise. Eur J Appl Physiol. 2008;104(6):1069–77.
Article
CAS
PubMed
Google Scholar
Mizuno S, Kojima C, Goto K. Timing Of Carbohydrate Ingestion Did Not Affect Inflammatory Response And Exercise Performance During Prolonged Intermittent Running. Spring. 2016;5:506.
Article
CAS
Google Scholar
Ivy JL. Glycogen Resynthesis After Exercise: Effect Of Carbohydrate Intake. Int J Sports Med. 1998;19(Suppl 2):S142–5.
Article
CAS
PubMed
Google Scholar
Jentjens R, Jeukendrup A. Determinants Of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33(2):117–44.
Article
PubMed
Google Scholar
Jentjens R, Van Loon L, Mann CH. Wagenmakers Ajm, Jeukendrup Ae: Addition Of Protein And Amino Acids To Carbohydrates Does Not Enhance Postexercise Muscle Glycogen Synthesis. J Appl Physiol. 2001;91:839–46.
CAS
PubMed
Google Scholar
Jentjens R, Jeukendrup AE. Determinants Of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33:117–44.
Article
PubMed
Google Scholar
Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Mcanulty SR, et al. Muscle Cytokine Mrna Changes After 2.5 H Of Cycling: Influence Of Carbohydrate. Med Sci Sports Exerc. 2005;37(8):1283–90.
Article
CAS
PubMed
Google Scholar
Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, et al. Carbohydrate Ingestion Influences Skeletal Muscle Cytokine Mrna And Plasma Cytokine Levels After A 3-H Run. J Appl Physiol. 2003;94(5):1917–25.
Article
CAS
PubMed
Google Scholar
Nicholas CW, Green PA, Hawkins RD. Carbohydrate Intake And Recovery Of Intermittent Running Capacity. Int J Sport Nutr. 1997;7:251–60.
Article
CAS
PubMed
Google Scholar
Macdougall JD, Ray S, Sale DG, Mccartney N, Lee P, Garner S. Muscle Substrate Utilization And Lactate Production. Can J Appl Physiol. 1999;24(3):209–15.
Article
CAS
PubMed
Google Scholar
Tesch PA, Colliander EB, Kaiser P. Muscle Metabolism During Intense, Heavy-Resistance Exercise. Eur J Appl Physiol Occup Physiol. 1986;55(4):362–6.
Article
CAS
PubMed
Google Scholar
Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen Resynthesis In Skeletal Muscle Following Resistive Exercise. Med Sci Sports Exerc. 1993;25(3):349–54.
Article
CAS
PubMed
Google Scholar
Haff GG, Stone MH, Warren BJ, Keith R, Johnson RL, Nieman DC, Williams F, Kirsey KB. The Effect Of Carbohydrate Supplementation On Multiple Sessions And Bouts Of Resistance Exercise. J Strength Cond Res. 1999;13(2):111–7.
Google Scholar
Dalton RA, Rankin JW, Sebolt D, Gwazdauskas F. Acute Carbohydrate Consumption Does Not Influence Resistance Exercise Performance During Energy Restriction. Int J Sport Nutr. 1999;9(4):319–32.
Article
CAS
PubMed
Google Scholar
Haff GG, Koch AJ, Potteiger JA, Kuphal KE, Magee LM, Green SB, Jakicic JJ. Carbohydrate Supplementation Attenuates Muscle Glycogen Loss During Acute Bouts Of Resistance Exercise. Int J Sport Nutr Exerc Metab. 2000;10(3):326–39.
Article
CAS
PubMed
Google Scholar
Kulik JR, Touchberry CD, Kawamori N, Blumert PA, Crum AJ, Haff GG. Supplemental Carbohydrate Ingestion Does Not Improve Performance Of High-Intensity Resistance Exercise. J Strength Cond Res. 2008;22(4):1101–7.
Article
PubMed
Google Scholar
Yaspelkis BB, Patterson JG, Anderla PA, Ding Z, Ivy JL. Carbohydrate Supplementation Spares Muscle Glycogen During Variable-Intensity Exercise. J Appl Physiol. 1993;75(4):1477–85.
CAS
PubMed
Google Scholar
Jeukendrup AE, Jentjens R, Moseley L. Nutritional Considerations In Triathlon. Sports Med. 2005;35(2):163–81.
Article
PubMed
Google Scholar
Ivy JL, Res PT, Sprague RC, Widzer MO. Effect Of A Carbohydrate-Protein Supplement On Endurance Performance During Exercise Of Varying Intensity. Int J Sport Nutr Exerc Metab. 2003;13(3):382–95.
Article
CAS
PubMed
Google Scholar
Saunders MJ, Kane MD, Todd MK. Effects Of A Carbohydrate-Protein Beverage On Cycling Endurance And Muscle Damage. Med Sci Sports Exerc. 2004;36(7):1233–8.
Article
CAS
PubMed
Google Scholar
Saunders MJ, Luden ND, Herrick JE. Consumption Of An Oral Carbohydrate-Protein Gel Improves Cycling Endurance And Prevents Postexercise Muscle Damage. J Strength Cond Res. 2007;21(3):678–84.
PubMed
Google Scholar
Mclellan TM, Pasiakos SM, Lieberman HR. Effects Of Protein In Combination With Carbohydrate Supplements On Acute Or Repeat Endurance Exercise Performance: A Systematic Review. Sports Med. 2014;44(4):535–50.
Article
PubMed
Google Scholar
Rustad PL, Sailer M, Cumming KT, Jeppesen PB, Kolnes KJ, Sollie O, Franch J, Ivy JL, Daniel H, Jensen J. Intake Of Protein Plus Carbohydrate During The First Two Hours After Exhaustive Cycling Improves Performance The Following Day. PLoS One. 2016;11(4):E0153229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ivy JL, Goforth HW Jr, Damon BM, Mccauley TR, Parsons EC, Price TB. Early Postexercise Muscle Glycogen Recovery Is Enhanced With A Carbohydrate-Protein Supplement. Journal Of Applied Physiology (Bethesda, Md : 1985). 2002;93(4):1337–44.
Article
CAS
Google Scholar
Zawadzki KM, Yaspelkis BB 3rd, Ivy JL. Carbohydrate-Protein Complex Increases The Rate Of Muscle Glycogen Storage After Exercise. J Appl Physiol. 1992;72(5):1854–9.
CAS
PubMed
Google Scholar
Berardi JM, Noreen EE, Lemon PW. Recovery From A Cycling Time Trial Is Enhanced With Carbohydrate-Protein Supplementation Vs. Isoenergetic Carbohydrate Supplementation. J Int Soc Sports Nutr. 2008;5:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise Muscle Glycogen Recovery Enhanced With A Carbohydrate-Protein Supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.
Article
CAS
PubMed
Google Scholar
Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Co-Ingestion Of Protein With Carbohydrate During Recovery From Endurance Exercise Stimulates Skeletal Muscle Protein Synthesis In Humans. J Appl Physiol. 2008;106(4):1394–402.
Article
PubMed
CAS
Google Scholar
Kraemer WJ, Hatfield DL, Spiering BA, Vingren JL, Fragala MS, Ho JY, Volek JS, Anderson JM, Maresh CM. Effects Of A Multi-Nutrient Supplement On Exercise Performance And Hormonal Responses To Resistance Exercise. Eur J Appl Physiol. 2007;101(5):637–46.
Article
CAS
PubMed
Google Scholar
Baty JJ, Hwang H, Ding Z, Bernard JR, Wang B, Kwon B, Ivy JL. The Effect Of A Carbohydrate And Protein Supplement On Resistance Exercise Performance, Hormonal Response, And Muscle Damage. J Strength Cond Res. 2007;21(2):321–9.
PubMed
Google Scholar
Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR. Timing Of Amino Acid-Carbohydrate Ingestion Alters Anabolic Response Of Muscle To Resistance Exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.
CAS
PubMed
Google Scholar
Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB. Essential Amino Acid And Carbohydrate Ingestion Before Resistance Exercise Does Not Enhance Postexercise Muscle Protein Synthesis. J Appl Physiol (1985). 2009;106(5):1730–9.
Article
CAS
Google Scholar
White JP, Wilson JM, Austin KG, Greer BK, St John N, Panton LB. Effect Of Carbohydrate-Protein Supplement Timing On Acute Exercise-Induced Muscle Damage. J Int Soc Sports Nutr. 2008;5:5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, Saris WH, Van Loon LJ. Protein Coingestion Stimulates Muscle Protein Synthesis During Resistance-Type Exercise. Am J Physiol Endocrinol Metab. 2008;295(1):E70–7.
Article
CAS
PubMed
Google Scholar
Bird SP, Mabon T, Pryde M, Feebrey S, Cannon J. Triphasic Multinutrient Supplementation During Acute Resistance Exercise Improves Session Volume Load And Reduces Muscle Damage In Strength-Trained Athletes. Nutr Res. 2013;33(5):376–87.
Article
CAS
PubMed
Google Scholar
Bird SP, Tarpenning KM, Marino FE. Effects Of Liquid Carbohydrate/Essential Amino Acid Ingestion On Acute Hormonal Response During A Single Bout Of Resistance Exercise In Untrained Men. Nutrition. 2006;22(4):367–75.
Article
CAS
PubMed
Google Scholar
Bird SP, Tarpenning KM, Marino FE. Liquid Carbohydrate/Essential Amino Acid Ingestion During A Short-Term Bout Of Resistance Exercise Suppresses Myofibrillar Protein Degradation. Metab Clin Exp. 2006;55(5):570–7.
Article
CAS
PubMed
Google Scholar
Bird SP, Tarpenning KM, Marino FE. Independent And Combined Effects Of Liquid Carbohydrate/Essential Amino Acid Ingestion On Hormonal And Muscular Adaptations Following Resistance Training In Untrained Men. Eur J Appl Physiol. 2006;97(2):225–38.
Article
CAS
PubMed
Google Scholar
Hulmi JJ, Laakso M, Mero AA, Hakkinen K, Ahtiainen JP, Peltonen H. The Effects Of Whey Protein With Or Without Carbohydrates On Resistance Training Adaptations. J Int Soc Sports Nutr. 2015;12:48.
Article
PubMed
PubMed Central
Google Scholar
Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society Of Sports Nutrition Position Stand: Creatine Supplementation And Exercise. J Int Soc Sports Nutr. 2007;4:6.
Article
PubMed
PubMed Central
Google Scholar
Kreider RB. Effects Of Creatine Supplementation On Performance And Training Adaptations. Mol Cell Biochem. 2003;244(1-2):89–94.
Article
CAS
PubMed
Google Scholar
Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler E, Al A. Effects Of Creatine Supplementation On Body Composition, Strength, And Sprint Performance. Med Sci Sports Exerc. 1998;30(1):73–82.
Article
CAS
PubMed
Google Scholar
Abdulla H, Smith K, Atherton PJ, Idris I. Role Of Insulin In The Regulation Of Human Skeletal Muscle Protein Synthesis And Breakdown: A Systematic Review And Meta-Analysis. Diabetologia. 2016;59(1):44–55.
Article
CAS
PubMed
Google Scholar
Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, et al. Disassociation Between The Effects Of Amino Acids And Insulin On Signaling, Ubiquitin Ligases, And Protein Turnover In Human Muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P. Branched-Chain Amino Acids As Fuels And Anabolic Signals In Human Muscle. J Nutr. 2006;136(1 Suppl):264s–8s.
CAS
PubMed
Google Scholar
Power O, Hallihan A, Jakeman P. Human Insulinotropic Response To Oral Ingestion Of Native And Hydrolysed Whey Protein. Amino Acids. 2009;37(2):333–9.
Article
CAS
PubMed
Google Scholar
Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, Rennie MJ, Macdonald MJ, Baker SK, Phillips SM. Carbohydrate Does Not Augment Exercise-Induced Protein Accretion Versus Protein Alone. Med Sci Sports Exerc. 2011;43(7):1154–61.
Article
CAS
PubMed
Google Scholar
Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An Oral Essential Amino Acid-Carbohydrate Supplement Enhances Muscle Protein Anabolism After Resistance Exercise. J Appl Physiol. 2000;88(2):386–92.
CAS
PubMed
Google Scholar
Pasiakos SM, Mcclung HL, Mcclung JP, Margolis LM, Andersen NE, Cloutier GJ, Pikosky MA, Rood JC, Fielding RA, Young AJ. Leucine-Enriched Essential Amino Acid Supplementation During Moderate Steady State Exercise Enhances Postexercise Muscle Protein Synthesis. Am J Clin Nutr. 2011;94(3):809–18.
Article
CAS
PubMed
Google Scholar
Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation Of Net Muscle Protein Synthesis By Whey Protein Ingestion Before And After Exercise. Am J Physiol Endocrinol Metab. 2007;292(1):E71–6.
Article
CAS
PubMed
Google Scholar
Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, Suetta C, Magnusson P, Aagaard P. The Effect Of Resistance Training Combined With Timed Ingestion Of Protein On Muscle Fiber Size And Muscle Strength. Metab Clin Exp. 2005;54(2):151–6.
Article
CAS
PubMed
Google Scholar
Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect Of Protein-Supplement Timing On Strength, Power, And Body-Composition Changes In Resistance-Trained Men. Int J Sport Nutr Exerc Metab. 2009;19(2):172–85.
Article
CAS
PubMed
Google Scholar
Delmonico MJ, Kostek MC, Johns J, Hurley BF, Conway JM. Can Dual Energy X-Ray Absorptiometry Provide A Valid Assessment Of Changes In Thigh Muscle Mass With Strength Training In Older Adults? Eur J Clin Nutr. 2008;62(12):1372–8.
Article
CAS
PubMed
Google Scholar
Schoenfeld BJ, Aragon A, Wilborn C, Urbina S, Hayward SB, Krieger JW. Pre- Versus Post-Exercise Protein Intake Has Similar Effects On Muscular Adaptations. Peer J. 2016;3(5):e2825.
Google Scholar
Ayers K, Pazmino-Cevallos M, Dobose C. The 20-Hour Rule: Student-Athletes Time Commitment To Athletics And Academics. Vahperd Journal. 2012;33(1):22.
Google Scholar
Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic Signaling Deficits Underlie Amino Acid Resistance Of Wasting, Aging Muscle. FASEB J. 2005;19(3):422–4.
CAS
PubMed
Google Scholar
West DW, Burd NA, Coffey VG, Baker SK, Burke LM, Hawley JA, Moore DR, Stellingwerff T, Phillips SM. Rapid Aminoacidemia Enhances Myofibrillar Protein Synthesis And Anabolic Intramuscular Signaling Responses After Resistance Exercise. Am J Clin Nutr. 2011;94(3):795–803.
Article
CAS
PubMed
Google Scholar
Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB. Leucine-Enriched Essential Amino Acid And Carbohydrate Ingestion Following Resistance Exercise Enhances Mtor Signaling And Protein Synthesis In Human Muscle. Am J Physiol Endocrinol Metab. 2008;294(2):E392–400.
Article
CAS
PubMed
Google Scholar
Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB. Nutrient Signalling In The Regulation Of Human Muscle Protein Synthesis. J Physiol. 2007;582(Pt 2):813–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohe J, Low JF, Wolfe RR, Rennie MJ. Latency And Duration Of Stimulation Of Human Muscle Protein Synthesis During Continuous Infusion Of Amino Acids. J Physiol. 2001;532(Pt 2):575–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM. Enhanced Amino Acid Sensitivity Of Myofibrillar Protein Synthesis Persists For Up To 24 H After Resistance Exercise In Young Men. J Nutr. 2011;141(4):568–73.
Article
CAS
PubMed
Google Scholar
Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, Atherton PJ, Phillips SM. Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated With Resistance Training-Induced Muscle Hypertrophy In Young Men. PLoS One. 2014;9(2):E89431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Willoughby DS, Stout JR, Wilborn CD. Effects Of Resistance Training And Protein Plus Amino Acid Supplementation On Muscle Anabolism, Mass. And Strength Amino Acids. 2007;32(4):467–77.
Article
CAS
PubMed
Google Scholar
Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing Of Postexercise Protein Intake Is Important For Muscle Hypertrophy With Resistance Training In Elderly Humans. J Physiol. 2001;535(Pt 1):301–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borde R, Hortobagyi T, Granacher U. Dose-Response Relationships Of Resistance Training In Healthy Old Adults: A Systematic Review And Meta-Analysis. Sports Med. 2015;45(12):1693–720.
Article
PubMed
PubMed Central
Google Scholar
Schoenfeld BJ, Aragon A, Wilborn C, Urbina SL, Hayward SE, Krieger J. Pre- Versus Post-Exercise Protein Intake Has Similar Effects On Muscular Adaptations. Peerj. 2017;5:E2825.
Article
Google Scholar
Aragon AA, Schoenfeld BJ. Nutrient Timing Revisited: Is There A Post-Exercise Anabolic Window? J Int Soc Sports Nutr. 2013;10(1):5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoenfeld BJ, Aragon AA, Krieger JW. The Effect Of Protein Timing On Muscle Strength And Hypertrophy: A Meta-Analysis. J Int Soc Sports Nutr. 2013;10(1):53.
Article
PubMed
PubMed Central
Google Scholar
Morton RW, Mcglory C, Phillips SM. Nutritional Interventions To Augment Resistance Training-Induced Skeletal Muscle Hypertrophy. Front Physiol. 2015;6:245.
Article
PubMed
PubMed Central
Google Scholar
Macnaughton LS, Wardle SL, Witard OC, Mcglory C, Hamilton DL, Jeromson S, Lawrence CE, Wallis GA, Tipton KD. The Response Of Muscle Protein Synthesis Following Whole-Body Resistance Exercise Is Greater Following 40 G Than 20 G Of Ingested Whey Protein. Phys Rep. 2016;4(15):e12893.
Article
CAS
Google Scholar
Arciero PJ, Ives SJ, Norton C, Escudero D, Minicucci O, O'brien G, Paul M, Ormsbee MJ, Miller V, Sheridan C, et al. Protein-Pacing And Multi-Component Exercise Training Improves Physical Performance Outcomes In Exercise-Trained Women: The Prise 3 Study. Nutrients. 2016;8(6):E332.
Article
PubMed
CAS
Google Scholar
Ives SJ, Norton C, Miller V, Minicucci O, Robinson J, O'brien G, Escudero D, Paul M, Sheridan C, Curran K, et al. Multi-Modal Exercise Training And Protein-Pacing Enhances Physical Performance Adaptations Independent Of Growth Hormone And Bdnf But May Be Dependent On Igf-1 In Exercise-Trained Men. Growth Hormon IGF Res. 2017;32:60–70.
Article
CAS
Google Scholar
Keim NL, Van Loan MD, Horn WF, Barbieri TF, Mayclin PL. Weight Loss Is Greater With Consumption Of Large Morning Meals And Fat-Free Mass Is Preserved With Large Evening Meals In Women On A Controlled Weight Reduction Regimen. J Nutr. 1997;127(1):75–82.
CAS
PubMed
Google Scholar
De Castro JM. The Time Of Day Of Food Intake Influences Overall Intake In Humans. J Nutr. 2004;134(1):104–11.
PubMed
Google Scholar
De Castro JM. The Time Of Day And The Proportions Of Macronutrients Eaten Are Related To Total Daily Food Intake. Br J Nutr. 2007;98(5):1077–83.
Article
PubMed
CAS
Google Scholar
Wu T, Sun L, Zhuge F, Guo X, Zhao Z, Tang R, Chen Q, Chen L, Kato H, Fu Z. Differential Roles Of Breakfast And Supper In Rats Of A Daily Three-Meal Schedule Upon Circadian Regulation And Physiology. Chronobiol Int. 2011;28(10):890–903.
Article
CAS
PubMed
Google Scholar
Loboda A, Kraft WK, Fine B, Joseph J, Nebozhyn M, Zhang C, He Y, Yang X, Wright C, Morris M, et al. Diurnal Variation Of The Human Adipose Transcriptome And The Link To Metabolic Disease. BMC Med Genet. 2009;2:7.
Google Scholar
Ma Y, Bertone ER, Stanek EJ 3rd, Reed GW, Hebert JR, Cohen NL, Merriam PA, Ockene IS. Association Between Eating Patterns And Obesity In A Free-Living Us Adult Population. Am J Epidemiol. 2003;158(1):85–92.
Article
PubMed
Google Scholar
Jakubowicz D, Barnea M, Wainstein J, Froy O. High Caloric Intake At Breakfast Vs. Dinner Differentially Influences Weight Loss Of Overweight And Obese Women. Obesity (Silver Spring). 2013;21(12):2504–12.
Article
CAS
Google Scholar
Fabry P, Hejl Z, Fodor J, Braun T, Zvolankova K. The Frequency Of Meals. Its Relation To Overweight, Hypercholesterolaemia, And Decreased Glucose-Tolerance. Lancet. 1964;2(7360):614–5.
Article
CAS
PubMed
Google Scholar
Hejda S, Fabry P. Frequency Of Food Intake In Relation To Some Parameters Of The Nutritional Status. Nutr Dieta Eur Rev Nutr Diet. 1964;64:216–28.
Google Scholar
Metzner HL, Lamphiear DE, Wheeler NC, Larkin FA. The Relationship Between Frequency Of Eating And Adiposity In Adult Men And Women In The Tecumseh Community Health Study. Am J Clin Nutr. 1977;30(5):712–5.
CAS
PubMed
Google Scholar
Farshchi HR, Taylor MA, Macdonald IA. Beneficial Metabolic Effects Of Regular Meal Frequency On Dietary Thermogenesis, Insulin Sensitivity, And Fasting Lipid Profiles In Healthy Obese Women. Am J Clin Nutr. 2005;81(1):16–24.
CAS
PubMed
Google Scholar
Cameron JD, Cyr MJ, Doucet E. Increased Meal Frequency Does Not Promote Greater Weight Loss In Subjects Who Were Prescribed An 8-Week Equi-Energetic Energy-Restricted Diet. Br J Nutr. 2010;103(8):1098–101.
CAS
PubMed
Google Scholar
Alencar MK, Beam JR, Mccormick JJ, White AC, Salgado RM, Kravitz LR, Mermier CM, Gibson AL, Conn CA, Kolkmeyer D, et al. Increased Meal Frequency Attenuates Fat-Free Mass Losses And Some Markers Of Health Status With A Portion-Controlled Weight Loss Diet. Nutr Res. 2015;35(5):375–83.
Article
CAS
PubMed
Google Scholar
Kulovitz MG, Kravitz LR, Mermier C, Gibson AL, Conn CA, Kolkmeyer D, Kerksick CM. Potential Role Of Meal Frequency As A Strategy For Weight Loss And Health In Overweight Or Obese Adults. Nutrition. 2014;30(4):386–92.
Article
PubMed
Google Scholar
Schoenfeld BJ, Aragon AA, Krieger JW. Effects Of Meal Frequency On Weight Loss And Body Composition: A Meta-Analysis. Nutr Rev. 2015;73(2):69–82.
Article
PubMed
Google Scholar
La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, Kreider RB, Stout JR, Ziegenfuss T, Spano M, et al. International Society Of Sports Nutrition Position Stand: Meal Frequency. J Int Soc Sports Nutr. 2011;8:4.
Article
PubMed
PubMed Central
Google Scholar
Phillips SM. The Science Of Muscle Hypertrophy: Making Dietary Protein Count. Proc Nutr Soc. 2011;70(1):100–3.
Article
CAS
PubMed
Google Scholar
Phillips SM. A Brief Review Of Critical Processes In Exercise-Induced Muscular Hypertrophy. Sports Med. 2014;44(Suppl 1):S71–7.
Article
PubMed
Google Scholar
Moore DR, Areta J, Coffey VG, Stellingwerff T, Phillips SM, Burke LM, Cleroux M, Godin JP, Hawley JA. Daytime Pattern Of Post-Exercise Protein Intake Affects Whole-Body Protein Turnover In Resistance-Trained Males. Nutr Metab (Lond). 2012;9(1):91.
Article
CAS
Google Scholar
Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, et al. Timing And Distribution Of Protein Ingestion During Prolonged Recovery From Resistance Exercise Alters Myofibrillar Protein Synthesis. J Physiol. 2013;591(9):2319–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow And Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arciero PJ, Baur D, Connelly S, Ormsbee MJ. Timed-Daily Ingestion Of Whey Protein And Exercise Training Reduces Visceral Adipose Tissue Mass And Improves Insulin Resistance: The Prise Study. Journal Of Applied Physiology (Bethesda, Md : 1985). 2014;117(1):1–10.
Article
CAS
Google Scholar
Arciero PJ, Edmonds RC, Bunsawat K, Gentile CL, Ketcham C, Darin C, Renna M, Zheng Q, Zhang JZ, Ormsbee MJ. Protein-Pacing From Food Or Supplementation Improves Physical Performance In Overweight Men And Women: The Prise 2 Study. Nutrients. 2016;8(5):E288.
Article
PubMed
CAS
Google Scholar
Arciero PJ, Gentile CL, Martin-Pressman R, Ormsbee MJ, Everett M, Zwicky L, Steele CA. Increased Dietary Protein And Combined High Intensity Aerobic And Resistance Exercise Improves Body Fat Distribution And Cardiovascular Risk Factors. Int J Sport Nutr Exerc Metab. 2006;16(4):373–92.
Article
CAS
PubMed
Google Scholar
Arciero PJ, Gentile CL, Pressman R, Everett M, Ormsbee MJ, Martin J, Santamore J, Gorman L, Fehling PC, Vukovich MD, et al. Moderate Protein Intake Improves Total And Regional Body Composition And Insulin Sensitivity In Overweight Adults. Metab Clin Exp. 2008;57(6):757–65.
Article
CAS
PubMed
Google Scholar
Ruby M, Repka CP, Arciero PJ. Comparison Of Protein-Pacing Alone Or With Yoga/Stretching And Resistance Training On Glycemia, Total And Regional Body Composition, And Aerobic Fitness In Overweight Women. J Phys Act Health. 2016;13(7):754–64.
Article
PubMed
Google Scholar
Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M. Increased Protein Intake And Meal Frequency Reduces Abdominal Fat During Energy Balance And Energy Deficit. Obesity (Silver Spring). 2013;21(7):1357–66.
Article
CAS
Google Scholar
Arciero PJ, Edmonds R, He F, Ward E, Gumpricht E, Mohr A, Ormsbee MJ, Astrup A. Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly In Obese Men And Women During Weight Loss And Sustains Efficacy During Long-Term Weight Maintenance. Nutrients. 2016;8(8):E476.
Article
PubMed
Google Scholar
Millward DJ. A Protein-Stat Mechanism For Regulation Of Growth And Maintenance Of The Lean Body Mass. Nutr Res Rev. 1995;8(1):93–120.
Article
CAS
PubMed
Google Scholar
Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ. Muscle Full Effect After Oral Protein: Time-Dependent Concordance And Discordance Between Human Muscle Protein Synthesis And Mtorc1 Signaling. Am J Clin Nutr. 2010;92(5):1080–8.
Article
CAS
PubMed
Google Scholar
Atherton PJ, Smith K. Muscle Protein Synthesis In Response To Nutrition And Exercise. J Physiol. 2012;590(5):1049–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baron KG, Reid KJ, Kern AS, Zee PC. Role Of Sleep Timing In Caloric Intake And Bmi. Obesity (Silver Spring). 2011;19(7):1374–81.
Article
Google Scholar
Ormsbee MJ, Gorman KA, Miller EA, Baur DA, Eckel LA, Contreras RJ, Panton LB, Spicer MT. Nighttime Feeding Likely Alters Morning Metabolism But Not Exercise Performance In Female Athletes. Appl Physiol Nutr Metab. 2016;41(7):719–27.
Article
CAS
PubMed
Google Scholar
Zwaan M, Burgard MA, Schenck CH, Mitchell JE. Night Time Eating: A Review Of The Literature. Eur Eat Disord Rev. 2003;11:7–24.
Article
Google Scholar
Kinsey AW, Ormsbee MJ. The Health Impact Of Nighttime Eating: Old And New Perspectives. Nutrients. 2015;7(4):2648–62.
Article
PubMed
PubMed Central
Google Scholar
Trommelen J, Van Loon LJ. Pre-Sleep Protein Ingestion To Improve The Skeletal Muscle Adaptive Response To Exercise Training. Nutrients. 2016;8(12):E763.
Article
PubMed
Google Scholar
Res P, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, Senden JM, Vanl LJ. Protein Ingestion Before Sleep Improves Postexercise Overnight Recovery. Med Sci Sports Exerc. 2012;44(8):1560–9.
Article
CAS
PubMed
Google Scholar
Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH, Van Loon LJ. Intragastric Protein Administration Stimulates Overnight Muscle Protein Synthesis In Elderly Men. Am J Physiol Endocrinol Metab. 2012;302(1):E52–60.
Article
CAS
PubMed
Google Scholar
Madzima TA, Panton LB, Fretti SK, Kinsey AW, Ormsbee MJ. Night-Time Consumption Of Protein Or Carbohydrate Results In Increased Morning Resting Energy Expenditure In Active College-Aged Men. Br J Nutr. 2014;111(1):71–7.
Article
CAS
PubMed
Google Scholar
Kinsey AW, Eddy WR, Madzima TA, Panton LB, Arciero PJ, Kim JS, Ormsbee MJ. Influence Of Night-Time Protein And Carbohydrate Intake On Appetite And Cardiometabolic Risk In Sedentary Overweight And Obese Women. Br J Nutr. 2014;112(3):320–7.
Article
CAS
PubMed
Google Scholar
Kinsey AW, Cappadona SR, Panton LB, Allman BR, Contreras RJ, Hickner RC, Ormsbee MJ. The Effect Of Casein Protein Prior To Sleep On Fat Metabolism In Obese Men. Nutrients. 2016;8(8):E452.
Article
PubMed
Google Scholar
Ormsbee MJ, Kinsey AW, Eddy WR, Madzima TA, Arciero PJ, Figueroa A, Panton LB. The Influence Of Nighttime Feeding Of Carbohydrate Or Protein Combined With Exercise Training On Appetite And Cardiometabolic Risk In Young Obese Women. Appl Physiol Nutr Metab. 2015;40(1):37–45.
Article
CAS
PubMed
Google Scholar
Figueroa A, Wong A, Kinsey A, Kalfon R, Eddy W, Ormsbee MJ. Effects Of Milk Proteins And Combined Exercise Training On Aortic Hemodynamics And Arterial Stiffness In Young Obese Women With High Blood Pressure. Am J Hypertens. 2014;27(3):338–44.
Article
CAS
PubMed
Google Scholar
Snijders T, Res P, Smeets JS, Van Vliet S, Van Kranenburg J, Maase K, Kies AK, Verdijk LB, Van Loon LJ. Protein Ingestion Before Sleep Increases Muscle Mass And Strength Gains During Prolonged Resistance-Type Exercise Training In Healthy Young Men. J Nutr. 2015;145(6):1178–84.
Article
CAS
PubMed
Google Scholar
Antonio J, Ellerbroek A, Peacock C, Silver T. Casein Protein Supplementation In Trained Men And Women: Morning Versus Evening. Int J Exerc Sci. 2017;10(3):479–86.
PubMed
PubMed Central
Google Scholar