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Abstract

Background: The present study examined putative modulators and indices of brain serotonergic and dopaminergic 

function, perceptual responses, and endurance exercise performance following caffeine co-ingested with a high fat 

meal.

Methods: Trained humans (n = 10) performed three constant-load cycling tests at 73% of maximal oxygen uptake 

(VO2max) until exhaustion at 10°C. Prior to the first test, subjects consumed a 90% carbohydrate meal (Control trial) and 

for the remaining two tests, a 90% fat meal with (FC trial) and without (F trial) caffeine.

Results: Time to exhaustion was not different between the F and FC trials (P > 0.05); [Control trial: 116(88-145) min; F 

trial: 122(96-144) min; FC trial: 127(107-176) min]. However, leg muscular discomfort during exercise was significantly 

lower on the FC relative to F trial (P < 0.01). There were no significant differences between F and FC trials in key 

modulators and indices of brain serotonergic (5-HT) and dopaminergic (DA) function [(i.e. plasma free and total 

tryptophan (Trp), tyrosine (Tyr), large neutral amino acids (LNAA), Trp:LNAA ratio, free-Trp:Tyr ratio, total Trp:Tyr ratio, 

and plasma prolactin] (P > 0.05) with the exception of plasma free-Trp:LNAA ratio which was higher at 90 min and at 

exhaustion during the FC trial (P < 0.05).

Conclusions: Neither brain 5-HT nor DA systems would appear to be implicated in the fatigue process when exercise is 

performed without significant thermoregulatory stress, thus indicating fatigue development during exercise in 

relatively cold temperatures to occur predominantly due to glycogen depletion.

Background

Following the exclusion of caffeine from the World Anti-

Doping Agency list of prohibited substances, there was

an increased interest in freely using caffeine, particularly

by endurance athletes, as an ergogenic aid supplement

[1]. It was previously reported that caffeine, at doses of

(3-9 mg • kg-1) body mass, enhances performance by alter-

ing substrate availability; more specifically by promoting

adipose tissue lipolysis and fatty acids oxidation from

skeletal muscle which contributes in enhancing carbohy-

drate (CHO) sparing [2,3]. Recently however, a consider-

able amount of evidence has cast doubts over the CHO-

sparing effect of caffeine during endurance exercise [e.g.

[4,5]. In addition, caffeine has been shown to improve

short duration high-intensity exercise performance

where glycogen depletion is clearly not the primary cause

of fatigue [e.g. [6,7]. Therefore, it is possible that the ergo-

genic effect of caffeine reflects a stimulant action on the

CNS [8,9] rather than the traditional CHO-sparing effect

during endurance exercise.

Animal studies, for example, suggest that caffeine has

the potential to reduce brain serotonin (5-HT) synthesis

by inhibiting tryptophan hydroxylase, the rate limiting

enzyme of central 5-HT biosynthesis [10], and/or to

reduce brain 5-HT:dopamine (DA) ratio by blocking

adenosine α1 and α2 receptors within the CNS, which
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otherwise inhibit brain DA synthesis [8,11]. Conse-

quently, one plausible explanation for the reduced effort

perception observed following caffeine ingestion [12]

may be due to the increased brain DA levels [8] and/or to

the reduced brain 5-HT response [10]. This is consistent

with the hypothesis that a high brain 5-HT:DA ratio may

favour increased subjective effort and central fatigue,

while a low 5-HT:DA ratio may favour increased arousal

and central motivation [13,14].

Newsholme et al. [15] proposed that an increase in

activity of 5-HT neurons in various brain regions such as

the midbrain and hypothalamus may contribute to

fatigue development during prolonged exercise, a mecha-

nism commonly referred as the "central fatigue hypothe-

sis". 5-HT is synthesised from the essential amino acid

precursor tryptophan (Trp) and during periods of high 5-

HT activity, the rate of 5-HT synthesis can be influenced

by the uptake of Trp from plasma [16]. A rise in plasma

free fatty acids (FFA) concentration displaces Trp from

albumin raising the Trp fraction in plasma, thus increas-

ing brain Trp uptake and arguably 5-HT synthesis

[17,18]. Subsequently, the net effect of ingesting caffeine

prior to exercise would be to increase central DA release

and/or to counterbalance the high 5-HT:DA ratio reduc-

ing therefore effort perception induced by the exercise

stress [14]. Consequently, the aim of the present study

was to examine the relationship between peripheral mod-

ulators of brain 5-HT and DA function, perceptual

responses and endurance performance during prolonged

submaximal exercise to volitional fatigue, following caf-

feine co-ingested with a high fat meal in well-trained

cyclists. The pre-exercise high fat meal was employed to

imitate physiologically the metabolic effects of caffeine in

an attempt to distinguish between the potential periph-

eral and/or central effects of caffeine.

Methods
Participants

Ten endurance-trained male cyclists [age 25 ± 6 years;

height 1.82 ± 0.07 cm; body mass 74.34 ± 8.61 kg; maxi-

mal oxygen uptake (VO2max) 62 ± 5 ml • kg-1 • min-1] volun-

teered to participate in the present study. All participants

gave their written informed consent to take part in the

study, which was approved by the local research ethics

committee.

Experimental design

The participants initially underwent ramp incremental

exercise (15-20 W • min-1) to the limit of tolerance using an

electrically braked cycle ergometer (Bosch Erg-551

Forckenbecksti, Berlin, Germany) to determine VO2max

and the maximal work rate. The participants were

required to undertake three cycled exercise tests to

exhaustion, at an ambient temperature of 10°C with 70%

relative humidity, at ~73% of VO2max (a work-rate equiv-

alent to 63% ± 5 of each individual's maximal work rate).

The participants underwent at least two familiarisation

trials prior to the three exercise tests in order to become

familiarised with the exercise protocol and experimental

procedures. During the familiarisation period (i.e., 3 days

prior to the second familiarisation trial) each participant's

normal energy intake and diet composition were deter-

mined from weighted dietary intake data using a comput-

erised version of the food composition tables of McCance

and Widdowson (revised by Holland et al., [19]). Based

on this information, subjects were prescribed a high

(70%) CHO diet throughout the study period (for twelve

consecutive days), intended to increase and maintain

liver and muscle glycogen concentration before each of

the main exercise trials [20]. The 70% CHO diet was

isoenergetic with each participant's normal daily energy

intake, and food items prescribed were based predomi-

nantly on each participant's normal diet.

Four hours prior to the first exercise test the partici-

pants consumed a standardised high CHO meal (Control

trial: 90% of energy intake in the form of CHO). The con-

trol trial was always performed first and therefore, this

trial was not included in the randomization, and hence in

the statistical analysis. Four hours before the second and

third exercise tests, the participants consumed a stan-

dardised high fat meal (1g fat• kg-1 body mass; 90% of

energy intake in the form of fat). All experimental meals

were isoenergetic and prepared by the same investigator.

One hour before exercise following the high fat meals

(second and third tests), participants ingested, in a cross-

over double blind manner, capsules containing either caf-

feine (7.5 mg• kg-1 body mass; FC trials) or an equivalent

amount of placebo (calcium carbonate; F trial). The par-

ticipants, who were habitually moderate caffeine users

(from none to two cups of coffee per day), were required

to maintain normal training habits throughout the study

period, but refrain from strenuous training and consump-

tion of alcohol or caffeine-containing products 48 hrs

prior to each exercise test.

Procedures

All exercise tests were carried out between 16:00-21:00 h

following a 4 h fast, where water was allowed ad libitum.

Participants reported to the laboratory 1 1/2 h before the

start of exercise, and on the two fat trials consumed cap-

sules containing caffeine or placebo, 3 h after consuming

the fat meal. Once body mass was measured, participants

were seated comfortably with their right hand and fore-

arm immersed for 15 min in water at 42-44°C, to achieve

arterialization of the venous blood [21]. Following this, an

18 G venous cannula was introduced into a superficial
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vein on the dorsal surface of the heated hand and a rest-

ing blood sample was obtained. Further blood samples

were obtained at 15 min intervals throughout exercise

until the 90 min time-point and at exhaustion. Partici-

pants were transferred to the climatic chamber (ambient

temperature 10.2 ± 0.2°C; relative humidity 69.8 ± 1.0%;

air velocity of approximately 3.6 m • s-1) and began exercise

within 1 min of entering. The exercise intensity and

ambient temperature were chosen to induce fatigue that

would be most likely due to muscle glycogen depletion

rather than the result of some failure in the thermoregu-

latory system [22]. The cannula was kept patent by a slow

(~0.5 ml • min-1) infusion of isotonic saline between sam-

ples during both experiments. Arterialization of the

venous blood was maintained throughout exercise by

heating the hand using an infrared lamp. The participants

ingested 7.14 g • kg-1 and 2.14 g • kg-1 of water at rest and

every 15 min throughout exercise, respectively. The par-

ticipants were asked to maintain a pedal cadence of 60-80

rev?min-1 throughout the test; exhaustion was defined as

the point at which the subject could no longer maintain

the pedal cadence above 60 rev • min-1

Expired gas was collected in Douglas bags for 5 min at

rest, and thereafter 1 min collections were obtained every

15 min during exercise. Expired gases were analysed

within 5 min of collection for oxygen uptake (VO2) (Ser-

vomex 570A, East Sussex, UK) and carbon dioxide pro-

duction (VO2) (Servomex 1400 B4, East Sussex, UK),

volume (dry gas meter, Harvard Apparatus Ltd., Hert-

fordshire, UK) and temperature (C6600 10-Channel

Microprocessor, Comark, Hertfordshire, UK). All gas vol-

umes were corrected to STPD. Barometric pressure was

measured using a standard mercury barometer.

The participants were asked to rate ''shortness of

breath'' (breathlessness/dyspnoea) and ''leg effort'' (leg

exertion) using Borg's 6 - 20 RPE scale [23] every 10 min

during exercise until exhaustion. Heart rate (Polar Sport

Tester, Polar Electro Oy, Finland) was also recorded every

10 min during exercise until exhaustion. Following exer-

cise, participants were weighed and loss of body mass was

calculated, after correcting for water consumed during

exercise. Time to exhaustion was recorded, but withheld

from the participant until all trials had been completed

and the participant had answered the post-intervention

questionnaire. Participants were asked: (1) to predict the

order of treatments received during the study; (2) to

nominate the treatment they perceived produced their

best performance; and (3) to indicate which trial they

found the most difficult.

Blood treatment and analysis

Blood (10 ml) was drawn into dry syringes and dispensed

into tubes containing K3EDTA and the remaining into

tubes containing no anticoagulant for later use. Duplicate

aliquots (400 μl) of whole blood from the K3EDTA tubes

were rapidly deproteinized in 800 μl of ice-cold 0.3 mol • l-1

perchloric acid. After centrifugation, the supernatant was

used for the measurement of glucose, lactate and pyru-

vate using standard enzymatic methods with spectropho-

tometric detection (Mira Plus, ABX Diagnostics,

Montpellier, France). A further aliquot of blood was cen-

trifuged and the plasma obtained was separated and used

for the measurement of free fatty acids (colorimetric

method, Roche Diagnostics GmbH, Germany) and con-

centrations of amino acids by HPLC using fluorescence

detection and pre-column derivitisation with 18 o-phtha-

laldehyde (Hypersel Amino acid method, ThermoHyper-

sil-Keystone, Runcorn, UK). Free-Trp was separated from

protein-bound Trp by filtering plasma through 10,000

NMWL 'nominal molecular weight limit' cellulose filters

(Ultrfree-MC filters, Millipore Corporation, USA) during

centrifugation at 5000 g for 60 min at 4°C. Prior to cen-

trifugation, filters were filled with a 95% O2 - 5% CO2

mixture in order to stabilize pH. The blood in tubes with-

out anticoagulant was allowed to clot and then centri-

fuged; the serum collected was used for the measurement

of prolactin (Prl) by sandwich magnetic separation assay

(Technicon Immuno 1 System, Bayer Diagnostics, New-

bury, UK).

Statistical analysis

Data are expressed as the mean ± SD following a test for

the normality of distribution. For data that violated the

assumptions for parametric analyses (i.e. equality of vari-

ance and normality of distribution) non-parametric anal-

yses was carried out and these data were expressed as the

median (range). As all participants completed the control

trial first and were subsequently assigned to the two fat

trials in randomized order, statistical analysis was carried

out on the two fat trials. Statistical analysis of the data

was carried out using a two-factor analysis of variance

(treatment × time) for repeated measures followed by

Student's t-test for paired data, where necessary. Time to

exhaustion was not normally distributed and was there-

fore analysed using the Wilcoxon signed rank test. Statis-

tical significance was declared at P < 0.05.

Results
Time to Fatigue and ratings of perceived exertion

Time to fatigue during constant-load exercise was similar

between the two fat trials [(Control trial: 116(88-145)

min; F trial: 122(96-144) min; FC trial: 127(107-176)

min)]. Ratings of perceived leg exertion were significantly

lower (F(1,9) = 11.985, P = 0.007) during constant-load

exercise on the FC compared with the F trial while ratings

of perceived breathlessness were not different between
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the trials (Figure 1). Six out of ten subjects ranked the FC
as the easiest trial (one subject was unsure).

Cardiopulmonary variables and fuel oxidation

O2 increased over time on both trials and it was higher
on the FC trial compared with the F trial (F(1,9) = 7.980, P

= 0.02) (Table 1). Minute ventilation ( E) was signifi-
cantly higher on the FC trial compared with F trial (F(1,9) =
10.917, P = 0.009) and there was a progressive increase in

E and co2 over time on both fat trials; no differences
in respiratory exchange ratio (RER) were found between
F and FC trials (Table 1). Heart rate and total CHO and
fat oxidation (FC trial: 371 ± 82g CHO, 77 ± 50g fat; F
trial: 388 ± 90g CHO, 52 ± 23g fat; Control trial: 367 ±
87g CHO, 39 ± 23g fat) were not different between the F
and FC trials.

Plasma amino acids, prolactin and blood metabolites
There were no significant differences between F and FC
trials in total [Trp], [Tyr], [LNAA], total [Trp]:[LNAA]
ratio and total [Trp]:[Tyr] ratio (Table 2). However, there
was a tendency for plasma free-[Trp] (P = 0.064) and free-
[Trp]:[Tyr] ratio (P = 0.066) to be higher on the FC rela-
tive to F trial (Figure 2). Plasma free-[Trp]:[Tyr] ratio did
not change over time. Plasma free-[Trp] increased over
time in both trials. The plasma free-[Trp]:[LNAA] ratio
was significantly higher at 90 min and at exhaustion on
the FC relative to F trial (P = 0.029) (Figure 2). The
plasma [Prl] was not different between trials (Figure 3).
The peak plasma [Prl] value was detected at exhaustion.
A higher plasma [FFA] was found on the FC compared to
the F trial (F(1,9) = 10.959, P < 0.01 P = 0.009) at rest and
during exercise (Figure 4). Higher blood [glucose] (F(1,9) =
23.329, P < 0.001), [lactate] (F(1,9) = 13.823, P < 0.01) and
[pyruvate] (F(1,9) = 35.262, P < 0.001) was found through-
out exercise on the FC compared with the F trial (Table
3). There was no correlation between time to exhaustion
and any of the other depended variables.

Reported side effects
Four out of the ten subjects experienced slight gastroin-
testinal discomfort; three following the high fat meal with
caffeine and one following the high fat meal alone. One
subject experienced more severe side effects following
the high fat meal and caffeine ingestion 30 min following
exercise. These effects included loss of consciousness,
dizziness, abdominal pain, nausea and vomiting. These
effects disappeared shortly after the experience.

Discussion
The present study examined the relationship between the
putative modulators and indices of brain serotonergic
and dopaminergic function, effort perception and endur-
ance exercise performance in a relatively cold (10°C) envi-
ronment following caffeine co-ingestion with a high fat
meal in well-trained humans. The results presented here
do not support any significant involvement of the puta-
tive modulators of brain serotonergic and dopaminergic
function in the exercise fatigue process during submaxi-
mal constant-load exercise at low ambient temperatures.
This lack of involvement of the putative modulators of
'central fatigue' was observed despite a significant reduc-
tion in effort perception following caffeine ingestion. It is
difficult however, to explain why the subjects in the pres-
ent experiment perceived it easier to exercise with caf-
feine than without, particularly when one considers the
accompanying elevation in blood [lactate], O2, and E
that typically would be expected to augment, rather than
attenuate effort perception [23]. It is possible that caffeine
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Figure 1 Ratings of perceived exertion, for leg muscular discom-
fort (top panel) and breathlessness (bottom panel). *: indicates a 
significant difference between the F (white dots) and the FC (black 
dots) trials. §: indicates significant differences within the trials com-
pared with the 15 min time-point. The dash line indicates the Control 
trial. Values are presented as the mean ± SD.
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may attenuate effort perception by lowering the pain
threshold through direct central neural effects [9], but the
exact mechanism remains unclear.

Caffeine at the micromolar levels utilised in the present
study has been shown to cross the blood brain barrier
(BBB) with the potential to serve as a competitive antago-
nist of adenosine [11]. The net effect would be to increase
central DA release by antagonising the inhibition of ade-
nosine α1 and α2 receptors on DA activity, thus reducing
effort perception induced by the exercise-stress [8]. This
was consistent with the hypothesis that a high 5-HT:DA
ratio may favour increased effort perception and central
fatigue, while a low 5-HT:DA ratio may favour increased
arousal and motivation [13,14]. Studies using rats for
example, found a reduction in brain 5-HT synthesis and
in the 5-HT:DA ratio, and an improvement in exercise
performance after direct intracerebroventicular caffeine
injection [8]. Similar results were found after an attenua-
tion of the enzyme Trp hydroxylase through caffeine
administration [10]. In the present experiment however,
although effort perception was significantly lower with
caffeine exercise performance was not different between
the trials. This result suggests a mismatch between effort

perception responses and endurance performance during
exercise in 10°C following caffeine co-ingested with a
high fat meal. In addition, a disparity was observed
between effort perception and peripheral precursors of
brain 5-HT synthesis. Although plasma free-
[Trp]:[LNAA] ratio was higher with caffeine throughout
exercise (P = 0.029) (Figure 2), effort perception was sig-
nificantly lower in the same trial.

The failure of caffeine to significantly affect brain sero-
tonergic function during exercise in the present study is
further reflected by the lack of difference in plasma [Prl]
(the brain 5-HT and DA metabolic-interaction marker)
between the trials. Previous studies have shown that Ket-
anserin, a 5-HT antagonist drug, reduced Prl release dur-
ing graded exercise to exhaustion [24,25]. A further study
reported that Trp infusion reduced exercise performance
and caused an earlier elevation in plasma [Prl] relative to
placebo or glucose infusion [26]. In addition, evidence
suggests that Prl release is mainly under the control of the
central serotonergic system and/or under the hypotha-
lamic 5-HT and DA metabolic interaction [27]. DA for
example, has been suggested to be the major Prl-secre-
tion inhibitor factor [28], and 5-HT injection or its ago-

Table 1: Cardiopulmonary variables.

Exercise Time (min)

Variables Trials Rest 15 30 45 60 75 90

O2 (L·min-1)
Control .3 ± .04 3.2 ± 0.4 3.2 ± 0.4 3.4 ± 0.5 3.4 ± 0.5 3.5 ± 0.6 3.4 ± 0.4

F .3 ± .03 3.1 ± 0.4 3.2 ± 0.4§ 3.2 ± 0.4 3.4 ± 0.4§ 3.4 ± 0.5§ 3.5 ± 0.5§

FC .4 ± .07 3.3 ± 0.3 3.4 ± 0.4 3.4 ± 0.5§ 3.5 ± 0.5§ 3.6 ± 0.5*§ 3.6 ± 0.5§

CO2 (L·min-1)
Control .3 ± .04 3.0 ± 0.5 3.0 ± 0.5 3.1 ± 0.5 3.1 ± 0.5 3.2 ± 0.7 3.1 ± 0.5

F .3 ± .03 3.0 ± 0.4 3.1 ± 0.4 3.1 ± 0.4 3.2 ± 0.4§ 3.2 ± 0.4§ 3.3 ± 0.5§

FC .3 ± .05 3.0 ± 0.3 3.1 ± 0.4 3.1 ± 0.4 3.2 ± 0.4 3.3 ± 0.5§ 3.2 ± 0.4

E (L·min-1)
Control 8.0 ± 2 66 ± 1 69 ± 1 73 ± 1 74 ± 1 78 ± 1 76 ± 9.0

F 8.0 ± 1 66 ± 1 68 ± 1 70 ± 1§ 73 ± 1§ 76 ± 1§ 78 ± 14§

FC 10 ± 2 70 ± 6 73 ± 8*§ 75 ± 1*§ 79 ± 1*§ 81 ± 1*§ 81 ± 10§

RER Control .89 ± .08 .95 ± .3 .95 ± .03 .94 ± .05 .94 ± .03 .93 ± .04 .93 ± .02

F .87 ± .10 .95 ± .3 .94 ± .03 .93 ± .04 .93 ± .03§ .93 ± .02 .91 ± .03§

FC .87 ± .07 .93 ± .4 .91 ± .03§ .91 ± .05 .91 ± .05 .90 ± .06 .88 ± .05§

Values are presented as the mean ± SD
*: Indicates a significant difference from the F trial at the same time-point.
§: Significant difference within the trials compared with the 15 min time-point.
Note: RER = Respiratory exchange ratio.

�V

�V

�V



Hadjicharalambous et al. Journal of the International Society of Sports Nutrition 2010, 7:22
http://www.jissn.com/content/7/1/22

Page 6 of 10
nist precursors and re-uptake inhibitors have been found
to increase hypothalamic Prl release and, hence, plasma
[Prl] [29]. Consequently, we hypothesised that if caffeine
could directly attenuate brain 5-HT synthesis [10] and/or
enhance DA release [8], Prl secretion would be expected
to be lower during the exercise trial involving caffeine.
The finding of lack of difference in plasma [Prl] between
trials may imply that caffeine contributes in reducing
effort perception (via a direct brain dopaminergic-medi-
ated effect) but it may not be effective enough to alter
neuroendocrine Prl secretion, particularly in trained
humans and when exercise is carried out in relatively cold
environment. Alternatively, circulating Prl levels may not
be a sensitive marker of brain 5-HT [24,25].

Previous studies have demonstrated that elevation in
plasma [FFA] displaces Trp from binding to albumin and
consequently increases the free-Trp:LNAA ratio into the
plasma [17,18,30,31]. Since Trp and the other LNAAs
share the L-system carrier for crossing the BBB, the ele-
vation in plasma free-Trp:LNAA ratio may favour brain
Trp uptake and potentially increase brain 5-HT synthesis
[32], and hence central fatigue [15,33]. A recent study
using analbuminaemic rats has shown an improvement in

exercise performance after reducing brain Trp uptake by
blocking the L-system carrier using 2-aminobicy-
clo[2,2,1]heptane-2-carboxylic acid, a specific inhibitor of
the L-system transporter [34]. Conversely, intracere-
broventricular Trp injection in the same species was
found to increase  and reduce mechanical efficiency
and exercise performance in rats [35]. In the present
experiment, the free-[Trp]:[LNAA] ratio was significantly
higher following caffeine ingestion. This effect may have
attributed to the action of caffeine in elevating adipose
tissue lipolysis and thus plasma [FFA], results that are
consistent with several previous reports (e.g. [2,3]). This
effect, in conjunction with a reduced effort perception
following caffeine ingestion could reflect the two oppos-
ing actions of the high fat meal and caffeine interven-
tions. The former potentially increasing 5-HT function
and subsequently effort perception [36], and the latter
increasing DA function, hence reducing effort perception
[8,14]. However, although caffeine may have effectively
reduced effort perception by possibly elevating brain DA
function exercise performance was not enhanced.

Total CHO and fat oxidation were not different
between F and FC trials. These results help confirm the

�V

Table 2: Plasma amino acids concentrations.

Blood collection time (min)

Variables Trials Rest 30 min 90 min End

Total [Trp] (μmol·l-1) Control 38 ± 8 36 ± 7 39 ± 3 46 ± 9

F 38 ± 7 39 ± 7§ 43 ± 6§ 42 ± 9

FC 38 ± 7 39 ± 7 43 ± 9§ 43 ± 7§

[Tyrosine] (μmol·l-1) Control 54 ± 8 53 ± 7 61 ± 7 71 ± 8

F 52 ± 3 58 ± 6§ 65 ± 7§ 68 ± 5§

FC 51 ± 4 55 ± 6§ 64 ± 8§ 66 ± 7§

[LNAA] (μmol·l-1) Control 500 ± 50 487 ± 35 486 ± 51 531 ± 60

F 522 ± 46 532 ± 50 518 ± 45 518 ± 54

FC 505 ± 40 499 ± 48 504 ± 48 506 ± 44

Total [Trp]:[LNAA] ratio Control .076 ± .013 .077 ± .012 .081 ± .009 .088 ± .016

F .072 ± .012 .074 ± .013 .083 ± .015§ .083 ± .021

FC .075 ± .012 .080 ± .013 .085 ± .013§ .085 ± .015§

Total [Trp]:[Tyrosine] ratio Control 0.72 ± .15 0.69 ± .13 .064 ± .08 0.66 ± .11

F 0.72 ± .14 0.68 ± .13§ 0.67 ± .11 0.63 ± .15§

FC 0.74 ± .17 0.72 ± .14 0.67 ± .14 0.65 ± .10§

Values are presented as the mean ± SD
§: Significant difference within the trials compared with the resting values.
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lack of significant involvement of the brain serotonergic
and dopaminergic modulators during this type of exer-
cise. These results also support the role of glycogen
depletion in fatigue development during prolonged exer-
cise in well-trained humans in relatively cold environ-
ments [22]. However, the role of elevated brain DA levels
in the reduction of perceptual responses and improve-
ment in performance during fatiguing exercise in a warm
environment is further supported by recent studies. Wat-
son et al. [37] for example, examined the effects of DA
and norepinephrine (NE) reuptake inhibitors in a tem-
perate or in a warm condition. These authors suggested
that DA reuptake inhibitors was able to reduce effort per-
ception and enhance performance in the heat by super-
seding hyperthermia-induced inhibitory signals within
the central nervous system responsible to terminate exer-
cise trial. Similarly, Roelands et al. [38] examined the
effects of methylphenidate, a DA reuptake inhibitor, on
exercise performance suggesting that this drug improve
30 minutes time-trial in the heat, but not in normal envi-
ronmental temperature. As it was mentioned above, in
the present study caffeine did not appear to influence
substrate utilisation, consequently, no improvement in
exercise performance could be reasonably expected, as it
is well established that fatigue during prolonged exercise
at 10°C is due to glycogen depletion [22]. The improve-
ments therefore, in endurance exercise performance
observed in previous caffeine studies are unlikely to be
associated with glycogen depletion, unless caffeine inges-
tion altered substrate utilisation. This is the reason why in
the present study a time to fatigue protocol, which glyco-

gen depletion could be achieved, was employed. Due to
the experiment design, in the present study we were able
to examine both the metabolic (peripheral) and central
(brain neurotransmission modulators and indices) effects
of caffeine during prolonged exercise.

Based on the results presented here, one could argue
that the lack of performance improvement following caf-
feine ingestion in conjunction with the reduced effort
perception observed is due to either the time to peak
plasma caffeine concentration or to individual differences
in caffeine uptake. We do not think however, that time to
peak plasma concentration had any significant effect on
the results since all subjects followed exactly the same
experimental procedure prior to each exercise trial. On
the other hand, the intra-individual differences in caffeine
uptake may elevate type II statistical error in the present
and perhaps in other previous studies where caffeine was
used as a treatment. This could be evident, if we take into
consideration that there may be "responders" and "non-
responders" to various drugs including perhaps caffeine.
In a psychophysiological study for example, where the
differences between the "responders" and "non-respond-
ers" to brain neurotransmission manipulating drug (e.g.
brofaromine and fluvoxamine) therapy were examined, it
was suggested that some physiological responses (e.g.
heart rate and blood pressure responsiveness) to the
drugs were different between the two groups, being
higher in the "non-responders" than the "responders" to
the drug group [39]. Similarly, Kampf-Sherf et al. [40]
examined the physiological responses to selective sero-
tonin reuptake inhibitors (SSRI) treatment to depressed

Table 3: Blood glucose, lactate and pyruvate concentrations for each of the three trials.

Blood collection time (min)

Variables Trials Rest 15 30 45 60 75 90 End

[Glucose] (mmol·L-1) Control 4.9 ± 0.9 3.8 ± 0.4 4.1 ± 0.3 4.2 ± 0.4 4.0 ± 0.4 3.9 ± 0.4 3.9 ± 0.5 4.1 ± 1.0

F 4.7 ± 0.6 4.1 ± 0.5 4.4 ± 0.4§ 4.3 ± 0.3 4.1 ± 0.3 3.9 ± 0.3 3.8 ± 0.4 3.8 ± 0.4

FC 4.7 ± 0.3 4.6 ± 0.4 4.8 ± 0.3* 4.8 ± 0.4* 4.7 ± 0.4* 4.4 ± 0.4* 4.3 ± 0.3*§ 4.1 ± 0.5*§

[Lactate] (mmol·L-1) Control 0.8 ± 0.2 3.6 ± 1.9 3.4 ± 2.1 3.5 ± 2.2 3.6 ± 2.1 3.8 ± 2.4 3.5 ± 1.8 4.5 ± 1.8

F 0.8 ± 0.3 3.4 ± 0.9 3.1 ± 1.1 3.0 ± 1.3§ 2.9 ± 1.3§ 2.9 ± 1.2§ 3.1 ± 1.2 4.1 ± 2.0

FC 0.8 ± 0.2 4.1 ± 1.5* 4.0 ± 1.8* 3.9 ± 1.9* 3.8 ± 1.9* 3.9 ± 1.9* 3.9 ± 1.8* 5.1 ± 2.1*

[Pyruvate] (μmol·L-) Control 157 ± 33 230 ± 46 218 ± 50 221 ± 49 224 ± 51 228 ± 48 234 ± 53 254 ± 61

F 159 ± 33 235 ± 49 223 ± 58§ 218 ± 53 212 ± 57 215 ± 44 216 ± 47 219 ± 46

FC 163 ± 41 256 ± 52 252 ± 58* 250 ± 57* 245 ± 57* 237 ± 63 239 ± 61 234 ± 51

Values are presented as the mean ± SD
*: Indicates a significant difference from the F trial at the same time-point.
§: Indicates a significant difference within the trials compared with the 15 min time-point.
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patients and they suggested that only two third of
patients with major depression have shown physiological
responses to antidepressants such as SSRI. In a previous
also study, the drug amynophylline was used as a "vehicle"
to test the physiological responses as well as adenosine
receptors to the drug [41]. These authors suggested that
there are "responders" and "non-responders" to the
amynophylline and this might be explained by genetic
differences in some elements of the adenosine signalling
pathway in humans [41]. Consequently, to minimise the
effect of this confounding variable on future exercise per-
formance studies, studies may be necessary to try and

identify "responders" and "non-responders" to caffeine
prior to starting the experimental trials.

Conclusions
In conclusion, brain serotonergic and dopaminergic sys-
tems are unlikely to be implicated in the fatigue process
when exercise is performed without significant thermo-
regulatory stress, thus enabling fatigue development dur-
ing endurance exercise to occur predominantly due to
glycogen depletion. Consequently, it could be suggested
that when artificial elevation in plasma FFA occurs, caf-
feine does not improve endurance performance either
through its potential peripheral metabolic pathway or via
its possible central mediated effects (i.e. enhancement of
brain dopaminergic system). For practical application
purposes we would like to suggest that under the envi-
ronmental circumstances that our experiment was exe-

Figure 2 Plasma free-Trp:LNAA ratio (bottom panel), free-Trp:Tyr 
ratio (middle panel) and plasma free-Trp (top panel). *: indicates a 
significant difference between the F (white dots) and the FC (black 
dots) trials. §: indicates significant differences within the trials com-
pared with the 15 min time-point. The dash line indicates the Control 
trial. Values are presented as the mean ± SD.
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cuted, although caffeine was not found to significantly
improve endurance performance, we could recommend
that a pre-exercise caffeine ingestion may contribute to
enable athletes a) to train with more motivation for pro-
gressively achieving elevation or maintenance in their
performance and b) to compete with more enthusiasm to
the limits of tolerance.
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